4
 BRIDGE AND PROBABILITY
 \qquad

Aims

Bridge

1) Introduction to Bridge

Probability
2) Number of Bridge hands
3) Odds against a Yarborough
4) Prior probabilities: Suit-Splits and Finesse
5) Combining probabilities: Suit-Splits and Finesse
6) Posterior probabilities: Suit-Splits

1) Introduction to Bridge The Basics

- Partnership game with 4 players
- 13 cards each

Introduction to Bridge - The Auction

- Bid how many "tricks" you predict you and your partner can make
- Bidding boxes
- "Declarer", "Dummy" and the "Defenders"

Bidding Box

Introduction to Bridge - The Play

- "Dummy" hand
- One card played at a time going clockwise
- "Trick" :

- "Follow suit"

S

- "Trumps"
- Winner begins the next trick

2) Number of Bridge hands - The Basics

- The number of ways you can receive 13 cards from 52 is:

Number of Bridge hands - Combinations

- Order does not matter
- Therefore, divide by $13!$ (or in general r!)

$$
\frac{n X(n-1) X(n-2) X \ldots X(n-r+1)}{r!}={ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

- ${ }_{52} \mathrm{C}_{13}=\frac{52!}{39!13!}=635,013,559,600$

3) Odds against a Yarborough - The Basics

- A Yarborough $=\mathrm{A}$ hand containing no card higher than a 9

- Earl of Yarborough
- Number of cards no higher than 9 is:

8 in each suit:

Odds against a Yarborough - The Odds

- $\mathrm{P}($ Yarborough $)=\frac{{ }_{32} \mathrm{C}_{13}}{{ }_{52} \mathrm{C}_{13}}$
- Odds against $\rightarrow P(\bar{A})$
$P(A)$
Note $P(\bar{A})=$ complement of A
$=P(\operatorname{not} A)$
- Odds against being dealt a Yarborough are 1827 to 1

4.1) Prior Probabilities - Suit-split

- Suit split = The division of cards between the 2 defenders in 1 suit
- $\mathrm{P}(3-3$ split $)={ }_{6} \mathrm{C}_{3} \quad \mathrm{X}{ }_{20} \mathrm{C}_{10}=0.3553$ ${ }_{26} \mathrm{C}_{13}$

Split	Probability
$3-3$	0.3553
$4-2 ~ \& ~ 2-4$	0.4845
$5-1 \& 1-5$	0.1453
$6-0 \& 0-6$	0.0149

4.2) Prior Probabilities
 - Finesse

- When East has the King, the Finesse always loses

Prior Probabilities
 - Finesse

- When East has the King, the Finesse always loses

- However, when West has the King, the Finesse always wins

Prior Probabilities
 - Finesse

- When East has the King, the Finesse always loses

Declarer
S

- However, when West has the King, the
Finesse always wins
- Therefore the Finesse has Probability 0.5 of succeeding

5) Combining Probabilities - Intersection and Union

Suit	Definite tricks	Possible extra tricks
Spades	1 (Ace)	1 (if finesse the Queen)
Hearts	1 (Ace)	0
Diamonds	3 (Ace, King, Queen)	1 (if defenders have a 3-3 split)
Clubs	2 (Ace, King)	0
Total	7	2

Combining Probabilities - Intersection and Union

- If you bid to make 9 tricks you have to make your 7 definite tricks and both of the possible extra tricks
- Intersection

$$
P(A \cap B)=P(A) \times P(B)
$$

- $\mathrm{P}(9$ tricks $)=\mathrm{P}$ ("Finesse succeeds" \cap " $3-3$ split")
= P("Finesse succeeds") X P ("3-3 split")

$$
=0.1777
$$

Combining Probabilities - Intersection and Union

- If you bid to make 8 tricks you have to make your 7 definite tricks and 1 of the possible extra tricks
- Union

$$
P(A \cup B)=P(A)+P(B)-p(A \cap B)
$$

- $\mathrm{P}(8$ tricks) $=\mathrm{P}$ ("Finesse succeeds" \cup " $3-3$ split")

$$
\begin{aligned}
= & P(\text { "Finesse succeeds") }+P(" 3-3 \text { split") } \\
& -(\text { (}(\text { Finesse succeeds") X P("3-3 split")) } \\
= & 0.6777
\end{aligned}
$$

Note if A and B are mutually exclusive $P(A \cap B)=0$

6) Posterior Probabilities - Suit-splits

- Probabilities change with each piece of new information
- Bayes Theorem:

$$
P(A \mid B)=\frac{P(B \mid A) X P(A)}{P(B)}
$$

- P(3-3 diamond split | Defenders 2 diamonds each)
$=\mathrm{P}$ (Defenders 2 diamonds each $\mid 3-3$ diamond split) X P(3-3 diamond split)
$P($ Defenders 2 diamonds each)
- Partition Theorem:
$P(B)=P(B \mid A) X P(A)+P(B \mid(\bar{A}) X P(\bar{A})$

Posterior Probabilities -Suit-splits

- P (Defenders 2 diamonds each)
$=P($ Defenders 2 diamonds each | $3-3$ split) $\times \mathrm{P}(3-3$ split)
+P (Defenders 2 diamonds each | 4-2 split) $\mathrm{X} \mathrm{P}(4-2$ split)
+P (Defenders 2 diamonds each $\mid 5-1$ split) $\times P(5-1$ split)
+P (Defenders 2 diamonds each | 6-0 split) $\times \mathrm{P}(6-0$ split)
$=1 \times 0.3553+1 \times 0.4845+0 \times 0.1453+0 \times 0.0149$
$=0.8398$
- $P(3-3$ diamond split | Defenders 2 diamonds each $)=\underline{1 \times 0.3553}=0.4231$ 0.8398

Summary

I used:

- Combinations for the:

Number of Bridge hands
Odds against a Yarborough
Prior probabilities of Suit-splits

- Intersection and Union for the:

Combined probabilities of Suit-splits and Finesse

- Bayes Theorem and Partition Theorem for the:

Posterior probability of Suit-splits

In my essay I will also use:

- Decision Theory to analyse the Scoring System
- Game Theory to analyse Bridge moves

