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Abstract

In this thesis, I designed and implemented WEBB, a computer program that produces
Bridge bidding systems. WEBB uses a genetic algorithm which leverages expert
Bridge knowledge to search the space of Bridge bidding systems. One way in which
WEBB differs from other (computerized) Bridge programs is that it learns a bidding
system rather than, typically, using a statistically-based search of bidding and card
play options or using a naive, pre-scripted convention/system. To learn better and
better systems, WEBB uses a co-evolutionary approach. Each system in a population
competes with one another in tournaments to acquire IMPs. IMPs endow a system
with breeding potential, allowing genetically superior bidding strategies to populate
ongoing generations. A bidding system is represented procedurally, i.e. as a policy.
Thus, WEBB conducts a search, co-evolutionary, in policy space.
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Chapter 1

Introduction

During the mid-1990s, Al research groups developing machine players for various

games scored wins against world champions in the corresponding domains. The first

instance was CHINOOK beating Don Lafferty at Checkers in January 1995 [10]. Next

came Deep Blue over Garry Kasparov at Chess in May 1997 followed by Logistello

over Takeshi Murakami at Othello in August 1997 [2, 8]. More difficult games such as

Go retain human world champions, but this could easily change as computers become

more powerful, as Go's higher branching factor may be overcome with more advanced

computers.

Games of imperfect information fall into a different category, however. Matthew

Ginsberg's GIB, a program that plays (i.e. bidding and card-play) Bridge, attempts to

overcome this obstacle by performing large Monte Carlo simulations to score possible

actions [6, 7]. However, even after performing many tens to hundreds of simulations

per decision, GIB performs well below the expert level at Bridge bidding. Inherent in

converting an imperfect information problem to that of solving many problems with

perfect information are two major defects, noted by Ginsberg:

1) ... the approach never suggests making an "information gathering play."

2) ... it is weak at ... combining ... possibilities.

No additional amount of computer power will overcome these deficiencies, so other

approaches must be considered.
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Bridge can be divided into two components: bidding and play. While full ma-

chine players need to perform both tasks, it is often useful to consider each process

independently to gain insights. While play is interesting in its own right as a game

of imperfect information and deduction, it is well studied with machine players per-

forming near or at the expert level even with the limitations noted above.

As a result, this work is focused on creating a machine bidder. This problem

can be further divided into two components. The first is using bids to construct a

language, known as a bidding system, as a framework for communication between

players. The second is choosing bids allowed by the language which are best suited

for situations as they come up. The latter is an interesting problem of searching and

evaluation techniques, but this research targets the root of the problem, the language

itself.

1.1 Problem History

Initial attempts at machine bidding used rules-based approaches, operating entirely

within the imperfect information domain (unlike GIB). Two early systems were cre-

ated by G. Carley in 1962 and A. Wasserman in 1970 [3, 4, 11]. These approaches

likely resulted from the overall lack of processing power necessary for exhaustive

searches, but indicated that such systems could fare well against average players at

the bidding portion of Bridge. These systems were fundamentally limited by the per-

son who encoded the rules, however, and more importantly, by the rules themselves.

In 1983, E.T. Lindel6f released information on COBRA, a computer optimized bid-

ding system generated by statistically examining several million boards [4, 9]. Using

these deals, Lindel6f created rules for calculating a basic points count (BPC) and a

distribution points count (DPC) from hand features and known features of partner

and opponents. Another rules based system assigns meanings to bids, providing in-

formation about features, causing BPC and DPC to be recalculated, and ultimately

using them to determine contracts.

COBRA performed well in constructive auctions, but performed poorly amidst



17

opponent interference, partly because of the disruption of the flow of information

between the players, but also because COBRA was not equipped to use the informa-

tion revealed by the opponents by their disruptions. While COBRA's rules system

resulted from extensive statistical analysis covering card layouts better than hand-

crafted rules, planning for all possible types of interference by opponents was imprac-

tical.

1.2 Challenges

In addition to interference, it is important to understand other difficulties specific to

the Bridge domain before constructing a bidding model.

1.2.1 Partnership Interaction

The first challenge, a corollary to interference, is partnership interaction. Even if the

opponents are silent in an auction, traditional planning techniques applied to gener-

ating a sequence of bids to best describe a hand will often fail because it is difficult or

impossible to anticipate how the bidder's partner will respond to intermediate bids.

This may create a situation where the remainder of a plan being executed is no longer

valid.

One possible approach to this problem is to disregard planning techniques and

use a greedy strategy, choosing the best bid in each situation without consideration

of later potential difficulties. Clearly some tradeoff is required to minimize awkward

bidding situations while exchanging useful information.

1.2.2 Partial Information

In addition to other problems that are a consequence of Bridge being a game of partial

information, certain difficulties arise as a more direct result. A first approximation

of the effective bidding would focus on efficiently exchanging information between

partnerships. However, any information that a player reveals also helps the oppo-
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nents evaluate the current situation. Thus it may be a better strategy for players to

reveal less information which is more relevant to their partners rather than the most

complete and accurate information possible. This brings up a related point: psychic

bids.

1.2.3 Psyching

Due to the varying utility information has to different players, it is sometimes useful

to choose a bid that misrepresents the hand of the bidder. Psyches can be minor,

representing a slight deviation from partnership agreements, while others can derail

the bidding for the opponents or hopelessly mislead partners. A common psyche is to

show strength and length in a suit, when the bidder has none. This is especially true

in the third-seat position, when the opponent yet to bid rates to have a strong hand.

The psychic bid can cause the opponents to never consider choosing that suit as trump

and can cause them to form a grossly inaccurate perception of card distribution. Even

if the psyche is discovered later in the auction, the disruption could cause irreparable

harm. If the partner of the psyching player has length in the suit instead, s/he may

try to compete in that suit, expecting substantial trump support and overall strength,

yet receive none, resulting in a large penalty.

Choosing when to psyche and learning how to identify psychic bids are not easy

tasks. However, the odds tend to be against the psychic bidders because the invalid

information tends to mislead partners more-so than opponents. Implementing psyches

in a computer bidding program would greatly complicate the overall model to produce

a small effect. Therefore, the model described in the rest of this document never

generates psychic bids and has no provisions for identifying and responding to them.

1.2.4 Evaluation

Evaluating the fitness of a bidding system accurately can be very difficult because

its performance is strongly dependent upon the types of bidding systems it competes

against. One way to deal with this problem is to maintain a sufficiently large and
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diverse population of bidding systems to rate an unknown system against. This

metric, however, is computationally expensive and dependent on the diversity of the

population.

Additionally, playing only one board against each member of the population may

not be sufficient because systems that are better across all boards may underperform

on a random sampling. This is a common issue across many games. Nevertheless, as

a result, it is not possible to tell with certainty which bidding system is best from a

set of candidates, but a good approximation is sufficient for most purposes.

1.3 Approach

Bridge bidding itself is commonly divided into two domains: constructive bidding

and competitive bidding. The former involves trying to bid accurately to games

and slams while the latter involves shutting out or safely out-bidding the opponents.

While competitive bidding is present, WEBB (Woolever's Evolving Bridge Bidder)

focuses on the former. No special considerations are added for effective competitive

bidding, but could be added at a later time.

Rather than trying to construct a complicated model that accounts for the difficul-

ties mentioned, WEBB consists of a general, yet robust, knowledge-based framework

that an evolutionary algorithm can operate on to evolve strategic, policy knowledge

related to bidding. Expert knowledge is leveraged in the design of the framework

so that the algorithm can exploit it to evolve bidding system structures that decide

what test to make and what to do as a result of the test.

The evolutionary algorithm allows diverse strategies to be exercised and evaluated

by having them compete with each other. In WEBB, play takes place as tournaments

among the population. IMPs are awarded (or subtracted) depending on the perfor-

mance of systems versus each other. This is feedback to the evolutionary adaptation

process as a fitness value. The best systems survive and adapt, through natural se-

lection and genetic inheritance. Offline, periodically, the system with highest IMP

total is evaluated by playing it against itself on 1,000 hands and versus others from
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other runs and/or other epochs.

WEBB gains its power not from either the expert knowledge in the model nor the

genetic algorithm, but the fusion of both into one system. The abstractions made by

the infused knowledge allow the evolutionary algorithm to search the 'right' space,

i.e. that of bidding system procedural knowledge, while the evolutionary algorithm,

using co-evolution in the form of tournament play, provides a tractable way to explore

the possible solution space.

Chapter 2 provides an overview of WEBB describing hand evaluation and intro-

ducing bidding system design. Chapter 3 describes the bidding system framework in

more detail, demonstrating how bid generation and bid explanation are performed

using a common data structure. Chapter 4 reviews learning techniques WEBB ap-

plies to produce bidding systems and what evaluation techniques are used. Chapter

5 summarizes the results of WEBB trial runs and compares WEBB'S performance to

that of GIB and human experts. Finally, Chapter 6 discusses what compromises are

made in WEBB's design and how it might be improved. A glossary of Bridge terms is

provided in Appendix A, as well as a brief discussion of duplicate Bridge in Appendix

B.
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Chapter 2

Model Description

Since the solution space for this problem is so large, using modules to enforce abstrac-

tions simplifies evolution, making the process more efficient and the results easier to

understand. If the abstractions are too restrictive, however, a good solution may

not fit the model representation because of the inherent complexity in an effective

solution. Some abstractions can be included in the representation itself, allowing the

evolutionary algorithm to reject or modify its use. This is not always possible, how-

ever, so some hard-coded abstractions are necessary. In this case, abstractions should

be carefully chosen from the tried-and-true abstractions common to most human-

designed bidding systems. This endangers the precept that human influence is to be

avoided, however. To minimize this effect, every such abstraction must be scrutinized

and justified. For each module in the model, whenever there is an abstraction being

made, a justification is provided for it.

2.1 Hand Evaluator

One such abstraction is to separate hand evaluation and bid description. Human

Bridge players rarely look at a Bridge hand as just a set of thirteen specific cards.

Rather they generalize by counting the number of cards in each suit, by noting specific

cards such as aces and face cards, and by noting the placement of these keycards (i.e.

a king supported by an ace or a queen is much more valuable than a singleton king).



Hand

Hand
Evaluator

Featur

Bidding
System

Bids and Bid Information

The Environment Other Players

Bidding State

Figure 2-1: WEBB overview

The purpose of WEBB's hand evaluator is to generate useful generalizations about

hands to aid the other components.

While it is possible to model each bidding situation as a complicated function map-

ping individual cards and knowledge of other players to bids, WEBB more practically

performs several less-complicated calculations once to generate higher-level features

of a hand and then operates on those features (via the bidding system module) in-

stead to generate bids. Occasionally bids may rely on information about individual

keycards, such as aces, kings, and sometimes queens, but usually only to refine in-

formation already revealed by higher-level features. This abstraction is made in all

known bidding systems to date. WEBB does not have any notion of keycards, but

adding it would be an easy task. WEBB, at present, calculates strength and uses

suit-length (sections 2.1.1 and 2.1.2).

2.1.1 Strength

All other things being equal, the value of an ace or a card of any rank can be estimated

by correlating the expected number of tricks that can be won in no-trump or a suit

contract versus the count of cards of that rank. For example, if a hand with one king

tends to produce one more trick than a hand with no kings, a king could be given

22
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a weight of 1/13 the total of all cards. Many bidding systems today use the Milton

Work count, weighing each ace as four high-card points (HCP), each king as three

HCP, each queen as two HCP, and each jack as one HCP. Thus, the expected HCP of

a hand is ten. These values are easy to remember, but most experts agree that aces

and tens should be valued slightly higher (than four HCP and zero HCP respectfully)

and that queens and jacks should be valued slightly less.

Using double-dummy results, the appropriate values can be calculated exactly,

assuming double-dummy play. This assumption will work well for systems generated

with WEBB, because contract evaluation assumes double-dummy play, but the values

may not be perfectly accurate for human play. One might expect queens, for example,

to be undervalued using double-dummy results, because declarers often face a guess

of which opponent has a queen of some suit. With double-dummy play, the declarer

will never guess wrong, and queens will win fewer tricks. This difference is minor,

however, and will not adversely affect the results.

Milton COBRA' WEBB

Ace 4.000 4.048 4.280
King 3.000 2.857 2.740

Queen 2.000 1.905 1.544
Jack 1.000 0.952 0.822

10 - 0.238 0.371
9 - 0.156
8 -_ 0.069

7 - 0.017

Table 2.1: HCP values for various models

In WEBB, HCP are computed to the nearest 5/64 (0.078), so some value is also

given to sevens, eights, and nines. WEBB derived its HCP values using the method

described above, over Matthew Ginsberg's library of double-dummy deals. An ace,

on average, produces 1.391 tricks, so it has a HCP value of 1.391 - 40/13 = 4.280.

Other values are computed in a similar fashion.

1BPC, adjusted so that the expected hand point count equals ten
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2.1.2 Shape

Other key features about a hand are characteristics of its shape. The simplest such

features are the numbers of cards held in each suit in a hand. Higher-level features

can be represented as compositions of suit lengths to determine whether a hand is

balanced, semi-balanced, or one, two, or three-suited, etc. However, such features

can be composed of lower-level suit-length descriptions, and thus do not need receive

special consideration in WEBB.

2.2 Bidding System Descriptor

This module is the heart of WEBB. Its first task, as the bid selector, is to choose a bid

given a hand and a bidding history. After selecting a bid, the bidding system has a

second task, as the bid descriptor, to provide other players with a list of features that

can be inferred from the bid. These two functions are, therefore, intricately linked,

and need to be considered jointly at all times. Consider if this was not the case,

allowing the bid selector to be an arbitrary function, represented as a black-box. The

best the bid descriptor could do is apply the black box to various sets of random, but

plausible, inputs to attempt to generalize the behavior of the box. Not only would

this be very difficult to implement, but it would be computationally expensive and

produce poor results.

If the bid selector is modeled instead as partitioning the hand space in the context

of the bidding history, the bid chosen will correspond to some subset of hands defined

by one or more partitions. The bid descriptor thus has the easier task of describing

the subset of possible hands by inspecting the relevant partitions. This is the method

used by WEBB.

At the top level, each bidding system is modeled as a large finite-state machine

(FSM). Each bidding state has a program to select a bid and maps each possible bid

to a new state, describing the transitions. Each partnership uses the same system,

and hence the same FSM. Thus, when a bid is chosen with a corresponding transition

to a new state, the bidder's partner will choose a bid based on the program contained
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in the new state. Each partnership begins in state 0. The number of states, as well

as the length of the program in each state, are parameters that may be adjusted.

Bid selection is therefore execution of the program in a bidding state. To perform

bid description, it is necessary to analyze the program. It is convenient to think

of the program as a decision graph, where each intermediate node corresponds to a

conditional branch, and each leaf node corresponds to a bid chosen. The bid descrip-

tor then has the task of describing the path(s) from the root node to a node that

corresponds to the selected bid.

Thinking back in terms of partitioning the hand space, the decision graph repre-

sents each partition with a decision node. Figure 2-2 shows a sample program and

the corresponding decision graph. The two-dimensional variable space is shown, with

the partitions defined by the decision nodes. In an actual example, there may be

many more variables, producing more dimensions, but the effect is the same.

HCP > 12.5

0
no yes

spades > 6 1 3 spades < 5

no yes no yes

2 4 5

pass I spade 1 no-trump

0: if my HCP > 12.5 skip 2 1 no-trump 1 spade
1: if my spades > 6 skip 2 12.5
2: pass
3: if my spades < 5 skip 1 HCP pass
4: bid 1 spade
5: bid 1 no-trump 0 2 4 6

spades

Figure 2-2: Bidding state program, decision graph, and partitioned hand space
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Chapter 3 explains how the program-decision graph duality can be exploited for

bid description in more detail, which is key to WEBB's performance. Decision and

bid nodes are discussed in more detail, including implementations of the nodetypes

used in WEBB.
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Chapter 3

Bidding System Detail

Chapter 2 introduced a WEBB bidding system as a FSM with a program in each

state to select a bid. Each program can also be interpreted as a decision graph with

decision nodes and bid nodes. This chapter digs deeper into these data structures

and describes algorithms for operating on them for selecting and describing bids.

3.1 Bidding States

In addition to the program contained in each bidding state used to select a bid, each

state must also list transitions to other states, corresponding to all possible bids. If

in the process of selecting a bid, control would run off the end of the program, it may

continue execution in some other program in a different bidding state instead. In this

manner, bidding states can use the information contained in other bidding states. To

prevent infinite loops, if this occurs more than a fixed number times (high enough for

state inheritance to be useful, but low enough to not hinder performance), the player

is assumed to choose 'pass' instead. Each entry in the program is 32 bits, specifying a

decision if the most significant bit is one or a bid if the bit is zero (refer to figure 3-1).

If randomly generated, each program within each bidding state will create a deci-

sion node at the root. Otherwise the program always chooses the same bid, a behavior

that tends not to be effective. If an unconditional bid is desired, it is still possible

to do this with either a mutation or having the root decision node be a decision that
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i1 B skip # entries data for decision node decision node id

1 1 6 16 8

B: 1 if skip on true, 0 if skip on false

0 9 j type data for bid type

1 23 (unused) 2 6

Figure 3-1: Bidding state program entry

always produces the same result.

3.2 Decision Nodetypes

Each decision node uses 24 bits to describe what the decision is to be made at a given

node (see figure 3-1). The least significant eight bits select which type of decision and

the remaining 16 bits are data, forming one or more parameters to specify constants.

Each decision nodetype used is described in more detail below. While WEBB currently

uses far fewer than the 256 possible nodetypes, the added capacity allows additional

nodetypes to be added with ease and chosen with different probabilities.

3.2.1 Strength

The strength decision type compares the HCP total of one or more players to a

constant and returns true if the sum is always at least (or at most) the specified

constant. In the case of just looking at the bidder (B = 1 or C = 1000), a simple

comparison against the holding of the player is sufficient. However, whenever other

players are involved, the minimum (or maximum) HCP holding of each player needs to

be used. Next, because the HCP of all players must sum to 40 (by Bridge convention),

if the players not involved have at most (at least) 40 - constant HCP, the affected

players must have at least (at most) constant HCP. For example, consider the case of

a decision node that branches if partner and LHO have 20 or more HCP. If they have
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are known to have at least 20 HCP, or the remaining players (RHO and the bidder

in this case) have at most 20 HCP, the branch will be taken. Thus, if the branch is

not taken, and RHO is known to have at most 12 HCP, the bidder has revealed that

s/he has at least 8 HCP. Otherwise the bidder could deduce that the condition must

be true. This type of deduction is built into WEBB.

I=A BJ C HCP value (ir

1 1 4 1 9

A: 0 if at most, 1 if at least
B: 0 if only me, otherwise consult C
C: sum me, pard, LHO, RHO

(0000 and 1111 become 1100)

5/64ths)

Figure 3-2: Strength decision type

3.2.2 Suit Length

The suit length decision type works in very much the same way as the strength

decision type. In this case, the constant is only four bits because there are only 13

cards in each suit. There is an additional parameter to specify which suit to include.

Because each player has exactly 13 cards, WEBB can make deductions about other

suit lengths, given information about the others. For example, if a player reveals

having four clubs, four diamonds, and at most three hearts, the player must have at

least four spades.

IA B C D

1 1 4 2 4

A: 0 if at most, 1 if at least
B: 0 if only me, otherwise consult C
C: sum me, pard, LHO, RHO

(0000 and 1111 become 1100)
D: suit

Suit length

4

Figure 3-3: Suit length decision type
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3.3 Bid Nodetypes

Bid instructions can be one of four types, each returning a Bridge bid in the context

of an auction. Each takes a six-bit number as a parameter (refer to figure 3-1).

direct This instruction maps 0 to 14, 1 to 10, ... 34 to 7NT, 35 to 14,... and 63 to

64. If the bid is invalid, it returns no bid.

relative This instruction bids a suit at some level above the current level, based on

bits 3-4. Bits 0-2 select the suit (0 and 5 to clubs, 1 and 6 to diamonds, 2 and 7

to hearts, 3 to spades, and 4 to no-trump). Bit 5 is unused. For example, 000100

corresponds to a no-trump bid at the lowest level and 001010 corresponds to a

jump-shift in hearts.

steps This instruction uses only bits 0-2, assigning 0 to the cheapest available bid

(excluding pass unless a free bid is available), 1 to the next available bid, etc.

pass\[re]double This instruction uses only bit 0. If the bit is zero, [re]double is

selected (or no bid if invalid). If the bit is one, pass is selected.

3.4 Bid Description

The above infrastructure describes how a player chooses a bid, but this is not sufficient

to implement a bidding system. There must be a way for other players to determine

features of the bidder's hand consistent with the bid(s) made. Using the above data

structure, it is relatively easy to determine these features. One procedure determines

features of individual bids and another makes inferences across multiple bids.

3.4.1 Feature Inferencing Algorithm (FIA)

This algorithm constructs a directed graph from the bidding program and walks over

it, pruning unreachable nodes. If there is only one path through the graph to reach the

chosen bid, all nodes will be pruned not in that path. Similarly, if the bidder made a
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decision that observers cannot determine, the reduced graph will have multiple paths

to the chosen bid, making it more difficult to determine features.

Beginning at the bottom of the bid selection program, each instruction is exam-

ined. In each case a node is added to the graph. For this reason, it is efficient to

implement as an array with as many slots as program entries. Depending on what

the instruction is, the algorithm responds differently:

Bid, not chosen Since the bid was not selected, the bidder did not take a path to

this node. Thus, insert it into the graph, but as a deactive node.

Bid, chosen Upon finding an instruction that produces the chosen bid, insert it into

the graph as an active node.

Conditional, both children active With both children having a path to the cho-

sen bid, either branch could have been chosen. Add a node to the graph and

connect the children appropriately, adding constraints on both outgoing arcs

corresponding to the decision that was made. Copy the constraints from each

child onto the arcs and verify that an impossible result has not been reached.

An example of this would be that a player holds fewer than five and more than

four spades. In this event, trim the arc and revert to the one-child case. If both

arcs have common constraints, these correspond to features that are known if

that node is traversed, regardless of which way the decision was made. As such,

copy it onto the node itself, to be further pulled up the graph toward the root.

Conditional, one child active With only one child active, if the decision was taken,

it is certain which way it was made. Add a node to the graph, setting the ap-

propriate constraint on the node itself. Ordinarily you would set the node to

have only one child, but to create a smaller graph, it is possible to adopt any

constraints on the child and add arcs to its children, effectively bypassing the

child node. Inductively, this operation collapses all chains of nodes into single

arcs with the intersection of the constraints on the chains. If a contradiction is

ever reached, trim the arc and revert to the no-children case.
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Conditional, no children active With no active children, the common parent was

not traversed. Add it to the graph, but as a deactive node.

Because of the constraint annotation process, any features that are known from

the bid will be constraints on the root node, where they may be simply read off.

There may be additional information available later, however, if there are still decision

nodes in the graph with two children. Information that is inferred later can create a

contradiction on one of the arcs, indicating that the player chose the other path in the

prior round. Thus, after constructing the graph in this manner, copy any remaining

active nodes and connecting arcs into a repository in an attempt to extract more

information later.

3.4.2 Graph Interference Algorithm (GIA)

Once two or more graphs are available, both graphs have inferred information at

the root. This information can be applied to all arcs and nodes in other graphs.

To do so apply this information to the root of the other graphs and push it down

the graph. Then beginning from the leaves and walking back up the graph, if the

new information creates any contradictions, prune the affected arc(s) and perform the

compaction steps described in FIA. If this ultimately creates more certain information

at the node, this process may be repeated on other graphs.

In theory, it may be possible to prune additional paths based on information con-

tained deeper within each graph, but this event is rare and computationally difficult to

detect. Doing so will not be useful anyway, unless it causes cascading contradictions,

yielding more information at the root.
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Chapter 4

Learning Through Co-evolutionary

Tournament Play

To develop intelligent bidding systems, WEBB creates a population of random bid-

ding systems then uses an evolutionary algorithm to adapt towards improved bidding

systems. There are several parameters to set:

Population seeding whether initial systems are initialized with random bits, with

previously evolved systems, or with winners of tournaments of random micro-

populations to boost initial population fitness

Population count the number of populations to simulate in tandem

Population size the number of systems in each population, generally held constant

throughout a simulation

Bidding state count the number of bidding states per member bidding system,

generally fixed across all bidding systems

Program entry count the number of entries in each bidding state. This value is

constant across all bidding states

Inheritance count the number of times control is allowed to flow off the end of a

program to that of another bidding state before a choice of 'pass' is assumed
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Fitness threshold IMP total required of each member to avoid replacement

Push penalty intensity of the penalty applied to systems that are too similar to

other population members

Migration frequency if multiple populations are used, the probability that a bid-

ding system is replaced with a migrant from another population

The population is tested and adapts towards improved performance on a library of

bridge deals. WEBB uses Ginsberg's double-dummy database, including over 700,000

hands. 1,000 hands are reserved as an evaluation set that the best systems periodically

bid to evaluate performance. Comparing each result with the double-dummy par is

a convenient way to estimate fitness, but this result does not have a direct result on

ordinary Bridge play.

Using the deal library, WEBB holds a round-robin tournament among the pop-

ulation members. In each matching, each system plays a board twice, once in each

direction. The net IMP result is added or subtracted from the fitness of each system.

If the IMP total ever falls below the fitness threshold, the system is replaced and the

resulting IMP deficit is spread over the population to maintain a zero IMP population

sum. Once each system has competed against each other system, the population is

sorted by fitness, so that the best members can be tested or examined. Then a new

round-robin tournament is held, repeating the process. As poor systems are replaced,

the population presumably becomes more competent at bidding.

4.1 Replacement Operators

With the exception of migration, when a bidding system is replaced, it is replaced with

either a mutated variant of another system or with some crossover of two parent sys-

tems. Some evolutionary operators produce subtle changes, suggesting hill-climbing

within a local region of the space of bidding systems. Other evolutionary operators

are more aggressive, tending to produce lethal mutations, but are responsible for leaps

in the evolution process.
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4.1.1 Mutations

Each mutation copies one parent making one or more small changes. These changes

can be any of the following types.

Bit Mutation This mutation changes each bit in each bidding state with some low

probability.

Entry Mutation This mutation replaces each entry in each bidding state with a

random entry with some medium probability.

Entry Insertion This mutation inserts a random instruction into one bidding state,

moving all instructions after the instruction down one slot (discarding the last

instruction). Each decision node before the affected instruction has its branch

target incremented if it points to an instruction after the insertion. Each de-

cision node after the affected instruction has its branch target decremented if

its branch target is in an inherited program. These modifications preserve as

many arcs in decision graphs as possible.

Entry Deletion This mutation deletes an instruction in one bidding state, moving

all instructions after the instruction up one slot (replacing the last instruction

with a random entry). Each decision node before the affected instruction has its

branch target decremented if it points to an instruction after the insertion. Each

decision node after the affected instruction has its branch target incremented if

its branch target is in an inherited program. These modifications preserve as

many arcs in decision graphs as possible.

Transition Mutation This mutation replaces each FSM transition with some medium

probability.

4.1.2 Crossovers

These operators attempt to take useful traits of two systems and combine them into

one.
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Bitwise Uniform Crossover This operator copies the parents bit-for-bit, choos-

ing randomly with equal probability to choose each bit from either parent. If

the parents are very dissimilar, this operator will almost always be fatal, but

population homogeneity allows it to produce useful offspring.

Entry Uniform Crossover This operator copies the parents at an entry-for-entry

level within each bidding state, choosing randomly with equal probability to

choose each entry from either parent. Transition tables are similarly chosen

randomly between the parents.

State Uniform Crossover This operator copies entire states from the parents,

choosing randomly with equal probability to choose each state from either par-

ent. FSM transitions remain attached to the state and are inherited accordingly.

State Adoption This operator copies a master parent system in its entirety except

for one state which is chosen randomly from the other parent. State uniform

crossover only allows state n to be crossed to state n. This operator relaxes

that constraint.

4.1.3 Migration

Finally, if multiple populations are being run in parallel, some replacements can copy

the best members of other population into the vacancy. Alternatively, if the best

bidding systems are occasionally saved, this method could also try reintroducing an

old bidding system into the population.

4.2 Population Control

Using the replacement scheme introduced above, certain safeguards are necessary to

ensure population diversity and turnover. Running as described, especially among

smaller populations, all member systems will eventually converge to some behavioral

equivalent. At this point replacement will halt, as all tournament matches will be
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pushes, producing no net IMP score, preventing fitness scores from falling below the

replacement threshold. To combat this, a scoring adjustment is made for systems

which obtain push results consistently.

The penalty applied is zero for the first push, but increases linearly for all subse-

quent pushes. When the system produces a non-zero result, its push count is reset to

zero. All IMPs deducted in this manner are distributed to all population members

uniformly to maintain a zero IMP population sum.

This process has two effects. First, if a population starts becoming too homo-

geneous, the penalties applied will increase, resulting in an increased amount of re-

placement, promoting diversity at the macro level. Second, systems that use strategies

that are different from the rest of the population will be less affected by the penalty,

effectively gaining IMPs when the collected push penalty IMPs are redistributed uni-

formly. If the difference is sufficiently bad, the system will still be replaced, but if the

difference is neutral this bonus prevents the system from being promptly replaced,

promoting diversity at the micro level.

4.3 Evaluation

While the described system is sufficient for learning, it lacks an objective way to

evaluate performance. Because systems are only compared to each other, with no

absolute fitness function, it is difficult to rate the effectiveness of systems across

populations and across all times. While it might be possible to score a bidding

system against a suite of benchmark bidding systems, the result is highly dependent

on the benchmark suite chosen because bidding systems can sometimes interact in

complicated ways. For example, system dominance is not transitive, so on a given

test set of boards, System A may beat System B which beats System C which beats

System A.

Instead, a more objective way to evaluate fitness is to compute the double-dummy

par for a board and to compare the performance of a system played against itself to the

par score. The par result is that which is obtained if both pairs bid perfectly (and in



38

the case of double-dummy scoring, omnisciently). The difference (converted to IMPs)

will therefore be zero for perfect bidding and nonzero if one side or the other could

have acted differently to get a better result for its side. While Bridge players are not

omniscient causing double-dummy par results to not always correspond to observed

par results from actual play, the measurement is approximate and objective.

However, even after computing the average IMP difference, the metric is not

completely accurate. If bidding systems were evolved to minimize this value, they

would learn to work cooperatively to get results near this magic number. Instead,

bidding systems are competitive and are willing to increase the variance of the results

if the expected result is good for themselves. A good example of this is the use of

preempts which do exactly that. This limitation can have a significant effect and is

discussed in more detail in the next chapter.

However, the metric is still a useful measure. For the 1,000 board evaluation set,

the average IMP difference for using a pass-always strategy is 8.4. The experimental

runs in the next chapter were able to produce strategies that reduce this to 5.5 IMPs,

on average.
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Chapter 5

Experiment Observations

To best observe population dynamics and the learning process, initially two single

populations were simulated, without migration. The first had a population size of

128 and the second had a population size of 256. Both populations were initialized

randomly, had four bidding states with eight instructions each, allowed three occur-

rences of inheritance, required each member to maintain -15 IMPs and had push

penalty of P/256 IMPs (with P = number of sequential pushes). Next 13 runs were

created to be run in tandem with migration. After a considerable amount of time,

the migration rate was increased tenfold to see if it would affect the run. The runs

are summarized in table 5.1.

5.1 Run A (Single population of size 128)

Operating on the 1,000 test boards, a bidding system using an always-pass strategy

would obtain a score of 8.400 using the objective function described in the last chapter.

After playing 500,000 boards, the population of 128 was able to score 5.700 IMPs

from par on average. An additional 600,000 boards reduced this to 5.507 IMPs. The

running time was approximately four days on a Celeron 550MHz computer.



Run A Run B Run C
Population seeding Random

Population count 1 13
Population size 128 256 128

Bidding state count 4 8
Program entry count 8 16

Inheritance count 3
Fitness threshold -15

Push penalty P/256
Migration frequency n/a 1/10001
Total boards played 1.73. 108 1.75. 108 4.99 -109

Objective Func. Min. 5.507 5.762 5.495

Table 5.1: Run parameter summary

Each member played an average of 102 boards before being replaced. If each

member has approximately the same probability of being replaced after each board,

a Poisson distribution describes the number of boards played by each system and

the expected age of the oldest member at any time should be approximately eight

times the average age (816 boards) for a population of size 128. In the steady state,

this is the case. In instances where a favorable mutation or crossover allows a new

member to perform well relative to the rest of the population, it can take thousands

of iterations before the rest of the population catches up and eliminates the member.

Initial systems learned gradually, advancing from 7.5 to 7.4 IMPs from par until

33,000 boards into the simulation when the system shaved off a full IMP by learning

to bid 3NT cooperatively. One player opens 2K0 with 14.3+ HCP and partner bids

31Q with 4.5+ HCP support, followed by a forced 34 and 3NT. After 290,000 boards

per member, the pattern simply follows 1NT-3NT, with INT replacing 20 as 14.3+

HCP and 3NT as 7.9+ HCP. Players also try to compete in spades holding 6+.

When a mutation reduced the number of spades necessary to compete from six

to five, the objective function improved further. However, such aggressive bidding

is dangerous, and indeed, WEBB evolves to double more freely leading to a large

'Increased to 1/100 at time 2.5 - 107 boards per member (3.20 - 10 9 boards total)

40
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spike in the objective function after 310,000 boards per member. Correspondingly,

average age, maximum age, and push percentage plummet. After 30,000 more boards

per member, the disruption is over, with the best system still bidding spades natu-

rally holding five, but doing so only at lower levels. Eventually the system achieves

slightly better results by bidding spade and heart games. Slams are never investigated

intelligently.

Dlr: East 4 AK West North East South
Vul: N/S Q Q876 141 Pass2

0 4 Pass2  1NT 3  24 3NT 4

4 AKQ1072 Pass Pass Pass
4 10 4 J987642
Q A932 Q 5 3NT by North, making 5
0 J10652 > A9 N/S Score: 660 (Par = 660)
4 963 4J84

4 Q53 (1) 6+ spades and 0-14.2 HCP
Q KJ104 (2) 0-5 spades and 0-14.2 HCP
0 KQ873 (3) 14.3+ HCP
4 5 (4) 7.9+ HCP

Figure 5-2: Run A example board

5.2 Run B (Single population of size 256)

The larger population run was very similar to the smaller run, but did not advance

as far. It was only able to reach 5.762 IMPs from par given the same amount of

CPU time (nearly 700,000 boards per member) compared to 5.507 for the smaller

run. Once again, the early population only made slight advances until learning to bid

3NT cooperatively, but did so much later than in the smaller run. The best system

evolved to find spade games aggressively.

Both populations exhibited some interesting traits. Most significant improvements

in the objective function are preceded by slight increases. These events can be de-

scribed by the introduction of a superior bidding system into the population which has

not yet played enough boards to have the highest fitness. In the meantime, because
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it uses different strategies than other bidding systems, the previous best system may

be demoted while a lesser system is lucky and gets promoted. As a result, between

the time the superior system is introduced into the population and the time it takes

for it to play enough boards, an inferior system may be temporarily ranked first.

Dlr: North 4 QJ952 West North East South
Vul: N/S (2 K8 141 Pass2  303

0 Q8 Pass 44 Pass Pass
4 9753 Pass

4 7 4 K864
Q QJ102 Q 653 44 by North, making 4
0 K97 0 AJ62 N/S Score: 620 (Par = 620)
4 QJ642 4 108

4 A103 (1) 5+ spades and 0-13.0 HCP
Q A974 (2) 0-13.0 HCP
0 10543 (3) 0-11 clubs and 12.5-19.0 HCP
4 AK

Figure 5-4: Run B example board

5.3 Run C (Multiple populations of size 128)

Introduction of multiple population with migration introduced produces interesting

effects. Superimposing the objective functions of the 13 population leaders (figure 5-

5), its behavior becomes a bit more clear. Some of the populations seem to make

dramatic progress between two and three million boards played per member, only

to lose it as migrants invade and take over the population. Clearly the migrants

exploited some weakness of the systems with low objective function score, but is is

unclear without further investigation whether the systems performed well otherwise.

To test this, a system from one of those populations was reserved before being

replaced (objective function = 5.597). Next, another system was similarly reserved

from some time later (around 18 million boards per member) with an objective func-

tion score of 5.853. Having them compete over the 1,000 test board set, the second

system beat the first by 901 IMPs, a large margin. While the objective function is a
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function of performance, there are clearly other factors. A more detailed discussion

of the objective function is presented in section 5.4.

Not surprisingly, when the migration rate was increased ten-fold (after 25.3 million

boards played per member), the objective functions for the individual populations

strayed less from each other, but no other effect was observed.

In two populations, systems reached an objective function score of 5.495 and 5.496

at 11 and 12 million boards per member, respectively. However, in each instance the

systems had the best fitness for only one round-robin iteration. This supports the idea

that systems with extreme objective function scores may not be strongest. Figure 5-6

demonstrates the performance of the 5.495 rated system.

Dlr: South 4 8762 West North East South
Vul: E/W O QJ87 1K>1

K Q Pass 2  14 3  Pass Pass
4 QJ103 Pass

4AK5 410
Q 943 Q A10652 14 by North, making 3
K A85 0 K10962 N/S Score: 140 (Par = 140)
47542 496

4 QJ943 (1) 0-5 hearts and 13.0-16.2 HCP
Q K (2) 0-16.2 HCP
K J743 (3) 0-10.0 HCP, usually 4+ spades
4 AK8

Figure 5-6: Run C example board

5.4 Objective Function Discussion

Up to this point, all references to objective function measurements have been with

regards to WEBB systems. Additional insight may be gained, however, by applying

the metric to human and other mechanical system bidding. To do this, the 40 boards

of the 2001 OKBridge Worldwide Collegiate Internet Championship semi-finals (Har-

vard vs. Harvey Mudd) and finals (Harvard vs. Bilkent) were selected for comparison.

Actual play results were ignored, using only the contracts and double-dummy results.
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The hands were fed through the WEBB system discussed in Run C with a objective

function score of 5.853, which nevertheless defeated a system with an objective func-

tion score of 5.597 by over 0.9 IMPs per board. Finally, they were also fed through

GIB 3.3.0 playing two-over-one with one minute of thinking time on a Celeron 550

computer. The results are summarized in table 5.2.

IMPs
pass-always 8.525

WEBB 6.475
Chen/Cotton 5.650
Sun/Woolever 5.350

GIB 4.425

Table 5.2: Objective function comparison

Interestingly, GIB obtained a very low objective function score. GIB chose to

bid constructively in most instances, allowing the right contract to be found more

often. On the other hand, the human players would often interfere boldly, an effective

strategy against good opponents, but frequently ended up far from par because of it.

Figure 5-7 illustrates this difference well.

As a result, to properly evaluate a bidding system, it may necessary to have sys-

tems compete directly against each other. This presents some complications, however,

due to the need to explain bids. Because there is no universal way to describe a bid,

it is a challenge to get GIB to understand bids made by WEBB and vice versa. This

would be very desirable, however, and could be a goal of future work.
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(1) 5+ hearts and 0-14.0
(2) 0-4 hearts and 16.3+
(3) 5.8+ HCP

West
Chen

Pass
Pass

North
Celikler

Double
Pass

East
Cotton

4Pas
Pass
Pass

HCP
HCP

South
Kececioglu

Pass
44

44 by South, down 1
N/S Score: -50 (Par = 400)

West
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Pass

Pass

North
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3K>

3NT
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3
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Figure 5-7: Player comparison
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Chapter 6

Suggestions for Future Research

The results obtained by WEBB are impressive considering how simple it is compared

to other bidding engines. As a result, there are many ways it can be improved. Some

are explored in this chapter.

6.1 Competitive Bidding

Currently, while WEBB uses information that can be derived from bids, it does not

use the bid itself. In order to be competent at competitive bidding, mechanisms

would need to be added to observe and react to opponents bids.

6.2 Advanced Hand Evaluation

While HCP is a useful metric for hand evaluation, it is not sufficient for advanced

bidding. Adjustments to this metric, similar to how COBRA computes BPC and

DPC, may provide a significant boost.

6.3 Uncertain information

While FIA and GIA are well-suited for dealing with static information, they are not

easily adapted to process features that may change value or with processing proba-
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bilistic information. Without these capabilities, WEBB is fundamentally limited.

6.4 High-level decision nodetypes

While strength and suit-length decision nodetypes provide basic functionality, good

bidding systems would incorporate other nodes operating on the state of bidding,

keycards, shape, stoppers, suit quality, and vulnerability. An alternative would be to

provide a mechanism for allowing WEBB to devise its own decision nodetypes rather

than just adjusting parameters to given nodetypes.

6.5 Expert Agents

While decision graphs are an effective way to choose a bid, as presented they lack a

way to express higher-level thinking. By creating expert agents for specific problems

and having their findings available to the overall decision making process, a significant

performance boost can be realized. As a side effect of the dynamic effects these agents

will produce, FIA and GIA will fail, however.

6.5.1 Contract Evaluation

The most basic of which is an agent that evaluates different contracts. Bj6rn Gamback

and Manny Rayner have done work using neural networks to estimate contract success

probabilities [5]. It is possible to take this further and to extend the agent to list

uncertain features that would best determine the appropriate contract. Knowing this,

the decision process could try to determine the most valuable information needed at

any given time and direct the auction appropriately.

6.5.2 Preempt Evaluation

To effectively preempt, a bidding system needs to consider the potential penalty that

the opponents may inflict, the likelihood that the penalty will be extracted, how
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effective the preempt will be, and how likely the loss of bidding space will hinder its

partner. Incorporating these into an expert agent, it could advise the decision process

whether or not a preempt is appropriate, and at what level to do so.

6.5.3 Save Evaluation

Similar to preempt evaluation, if the opponents bid game or slam, a high-level process

should determine whether a save is available and consider it versus the probability

that the opponents will make their contract.

6.5.4 Penalty Evaluation

Finally, if the opponents make a bid that will probably not be made, some considera-

tion should be given to penalizing them. In conjunction with the contract evaluator,

the penalty evaluator could estimate the probability the opponents may make a con-

tract, the benefit of penalizing them, the cost of doubling a making contract, and

whether playing another contract may produce a higher score.

6.6 Comparison with COBRA

If some of the above features were added to make WEBB a better bidder, it would be

interesting to see how it compares to COBRA in terms of both system behavior and

performance.

6.7 Human Utility

If good bidding systems can be generated, there will be thousands of Bridge players

eager to examine the inner workings of such systems. Unfortunately, evolutionary

systems are notorious for producing cryptic solutions escaping analysis and human

understanding. Presumably, the best way a human could understand such a system is

by example. Given a bidding sequence, the bidding system should be able to describe

what all continuations mean.
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An alternative is to require that the only information that can be expressed with

bids be expressible succinctly in English or some other natural language. While this

may be slightly restrictive, systems that cannot be described effectively are useful

only as a Bridge curiosity.
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Chapter 7

Summary

WEBB is a modular, extensible program with the goal of producing improving bidding

systems for Bridge. It is a fusion of two inter-working components: expert knowledge

of bridge and a co-evolutionary competitive learning module. Expert knowledge is

expressed in WEBB in terms of hand features and bid description. Other knowledge

could be easily added in form of additional hand features to improve performance,

but the purpose of this work is to demonstrate that evolutionary learning can be

effectively applied to the domain of Bridge bidding. Co-evolution is essential for the

learning module to operate effectively, using IMP totals as a fitness measure to guide

genetic reproduction, inheritance, and variation.

WEBB is not only evaluated in terms of how bidding systems improve, but also

with an external objective measure of bidding a 1,000-board evaluation set. Un-

fortunately, neither the objective function nor competition are completely accurate

in assessing true ability. However, by both metrics, WEBB obtained fair results,

despite its basic operator set. This provides indications that performance-based im-

provements could have a significant effect, as WEBB adapts to incorporate the new

information into bidding systems.
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Appendix A

Glossary

auction a sequence of bids, ultimately leading to a contract.

board a bridge deal, usually played multiple times by different people

COBRA Computer Oriented BRidge Analysis - a computer optimized bidding system

designed by E.T. Lindel6f [9]

contract the result of bidding, including a trump suit, level, and whether or not it

is played [re]doubled (Ex. 3NT-X)

double-dummy This refers to each player being aware of what specific cards each

other player has. This perfect information is never available in real games, but

it is a useful approximation of actual conditions and is much easier to evaluate.

double jump-shift a bid of some suit (or no-trump) when the bidder has the option

of bidding the same suit (or no-trump) at two levels lower (ex. 14-412)

FIA Feature Inferencing Algorithm (section 3.4.1)

free bid a bid made after the previous play has made a bid, meant to indicate the

case where a player's partner would have an opportunity to bid whether or not

the player bids.

GIA Graph Interference Algorithm (section 3.4.2)
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GIB Ginsberg's Intelligent Bridgeplayer

HCP high-card points

high-card points a simple hand evaluation metric which gives weight to cards of

different ranks which are summed together to form the HCP total for a hand

IMP a type of scoring where the point difference is scaled approximately logarith-

mically (refer to table B.1)

jump-shift a bid of some suit (or no-trump) when the bidder has the option of

bidding the same suit (or no-trump) at one lower level (Ex. 1Q-24).

LHO left-hand opponent

par the expected score on a deal

pard partner

preempt a high-level bid showing a weak unbalanced hand (often with one long suit)

for the purpose of disrupting the opponents' bidding

push using IMP scoring, a raw score difference or -10, 0, or +10 which corresponds

to a zero IMP score

RHO right-hand opponent

save a contract not meant to be made, but bid on the belief that even if doubled,

the penalty will be less than what the opponents can score if allowed to play

the hand

two-over-one a common bidding system

WEBB Woolever's Evolving Bridge Bidder
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Appendix B

Introduction to Duplicate Bridge

Duplicate Bridge is a card game played with at least eight players. The most common

arrangement, involving two teams of four players, involves two players from each team

sitting north-south at one of two tables, with their teammates sitting east-west versus

their opponents at the other table. Each deal of bridge played (called a board) is played

at each table. By having each team play each board in each direction, a net score

can be generated based on how well each team does compared to the other. This net

score is converted to International Matchpoints (IMPs) based on table B.1.

APoints IMPs APoints IMPs APoints IMPs
20-40 1 370-420 9 1500-1740 17
50-80 2 430-490 10 1750-1990 18
90-120 3 500-590 11 2000-2240 19
130-160 4 600-740 12 2250-2490 20
170-210 5 750-890 13 2500-2990 21
220-260 6 900-1090 14 3000-3490 22
270-310 7 1100-1290 15 3500-3990 23
320-360 8 1300-1490 16 4000+ 24

Table B.1: International Matchpoint scale [1]
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B. 1 Mechanics

A standard deck of 52 cards is shuffled and divided equally among four players.

One player is considered the dealer (which rotates with each hand) who has the

opportunity to make the first bid. A bid consists of a number, one to seven, and a

suit (or no-trump). The number indicates how many tricks the bidder will try to take

beyond six if the chosen suit is trump. A one-level contract indicates an attempt at a

simple majority of the tricks and a seven-level contract indicates an attempt to take

all thirteen tricks. Instead of choosing to bid any player may pass, double a bid of

their opponents, or redouble an opposing double. Bidding proceeds clockwise until

three people pass in sequence (or four if noone has yet opened the bidding). Each

bid must be greater than the previous bid in count, or equal in count but higher in

suit (ranked from lowest to highest: clubs, diamonds, hearts, spades, no-trump).

If all four players pass, the score for each partnership is zero. Otherwise play

commences, with the side that chose the last bid (known as the contract) trying to

take at least as many tricks as indicated by the contract while their opponents try to

prevent this. Of the two players on the partnership playing the hand, the player who

first suggested playing in the trump suit is the declarer. The opponent to the left of

the declarer chooses a lead after which the declarer's partner (the dummy) spreads

his cards on the table. The declarer chooses a card to play from these, the other

opponent plays a card, and finally the declarer plays a card to constitute a trick.

Each player must follow with the suit led, if possible. The player with the highest

ranking card of the led suit (or the highest ranking trump if any are played) wins the

trick and leads a card starting the next trick. This process repeats until all thirteen

tricks have been claimed.

B.2 Score

For each board, either or both sides may be vulnerable which increases the bonuses

for bidding and making game or slam. However, the penalty for failing to take the
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indicated number of tricks also increases. Each partnership earns the additive inverse

of their opponents' score.

B.2.1 Contract is made

20 points are awarded for each trick claimed and made with clubs or diamonds as

trump (30 points otherwise). If the contract is no-trump, 10 additional points are

added. If the contract is doubled or redoubled, this score is doubled or redoubled,

accordingly. If the result is 100 or more points, the contract is called a game contract,

and an additional bonus is available (refer to table B.2). Otherwise 50 points are

awarded for making a contract. If twelve tricks are claimed and won, the contract is

called a small slam. Finally, if all thirteen tricks are claimed and won, the contract

is referred to as a grand slam (refer to table B.3).

4/K V/4 No-trump
Undoubled 5 4 3
Doubled 3 2 2

Redoubled 2 1 1

Table B.2: Minimum contract levels needed for game bonus

Not vulnerable Vulnerable
Part score 50 50

- or - - or - - or -
Game bonus 300 500
Small slam 500 750
Grand slam 1000 1500

Table B.3: Contract bonuses[1]

Additional tricks beyond those required for the contract are worth 20 points each

if clubs or diamonds is trump (30 points otherwise). If the contract is doubled,

additional tricks are worth 100 or 200 instead (regardless of the trump suit). If the

contract is redoubled, additional tricks are worth 200 or 400 instead. Finally a bonus
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of 50 points is added for making any doubled contract or 100 points for any redoubled

contract.

Not vulnerable Vulnerable
Undoubled normal value normal value

Doubled 100 200
Redoubled 200 400

Table B.4: Overtrick bonuses[1]

B.2.2 Contract is set

If the opponents are successful at setting the contract, they earn 50 or 100 points per

trick, depending on the vulnerability of the declaring side. If the contract is doubled,

the award increases to 100 points for the first trick under the count needed, 200 points

for each of the second and third tricks, and 300 points for any subsequent tricks. If

declaring side is vulnerable, instead use 200 points for the first trick and 300 points

for subsequent tricks. If the contract is redoubled, the award is doubled.

Not vulnerable Vulnerable
1 2 1 3 1 4+ 1 2 3 4+

Table B.5: Undertrick penalties[1]

Undoubled 50 100 150 +50/each 100 200 300 +100/each
Doubled 100 300 500 +300/each 200 500 800 +300/each

Redoubled 200 600 1000 +600/each 400 1000 1600 +600/each
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