
Advances in computer bridge:

techniques for a partial-information,

communication-based game

by

Paul M. Bethe

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2021

Professor Ernest Davis

c©Paul M. Bethe

All Rights Reserved, 2021

Dedication

To my family, for always inspiring me to work harder.

iii

Acknowledgements

First of all, I would like to thank my advisor Ernie Davis for working with me for so many years,

and helping me finish up after 10 years of effort. This thesis would not have happened without the

many faceted support of my employer, both in time and money. Finally, I am grateful to my wife

Lindsay for pushing me over the years to finish, even when life became much more complicated.

iv

Abstract

Bridge is an imperfect information game with elements of competition against opponents as well as

cooperation with a partner. Despite the application of many tenets of artificial intelligence, humans

have yet to be consistently bested by the computer. This thesis explores AI shortcomings in both

the play and bidding phases of the game. In the play, we explore weaknesses in the cutting edge

Monte Carlo techniques and explore both inference and learning based solutions. In the bidding,

we go beyond existing rule based systems and investigate deep reinforcement learning as a method

to learn how to bid.

v

Table of Contents

Dedication iii

Acknowledgements iv

Abstract v

List of Figures x

List of Tables xii

1 Introduction 1

2 Background 3

2.1 Fundamentals of Bridge . 3

2.1.1 Overview . 3

2.1.2 Dealing . 4

2.1.3 Bidding . 4

2.1.4 Contract . 5

2.1.5 Play . 5

2.1.6 Claims . 6

2.1.7 Duplicate vs Rubber . 6

2.1.8 Scoring . 7

2.1.9 Diagrams and Nomenclature . 7

2.1.10 Play Techniques . 9

2.1.11 Bidding Methods . 14

2.2 Computer Games . 17

vi

2.2.1 Simple Search . 17

2.2.2 Minimax in Games . 18

2.2.3 Alpha-Beta Pruning . 20

2.2.4 Transposition Tables . 21

2.2.5 Evaluation Functions . 21

2.2.6 Imperfect Information . 21

2.2.7 Monte Carlo . 22

2.2.8 Conformant Planning . 22

2.3 State of Bridge Play . 23

2.3.1 Partition Search . 23

2.3.2 Limitations of Monte Carlo . 24

2.3.3 General Bidding . 27

2.3.4 Bidding Systems and Meanings . 27

2.3.5 Recent Work . 27

2.3.6 Current Programs . 29

2.4 Advances with Machine Learning . 29

2.4.1 AlphaGo . 29

2.4.2 Poker . 30

3 Improving Move Selection using Monte Carlo 31

3.1 Expert Ability . 31

3.2 Monte Carlo Tree Search . 33

3.3 Finding Flaws . 34

3.3.1 Subtle Error . 34

3.3.2 Beginner Mistake . 37

3.3.3 Equal is not Equivalent . 39

3.3.4 Player Construction . 39

3.3.5 Frequency . 41

3.3.6 Desired Result . 42

3.4 Improvements . 44

3.4.1 Sub-simulation . 44

3.4.2 Learning . 44

vii

3.4.3 Information Score . 45

3.4.4 Goal Modification . 46

3.5 Experimental Results . 46

3.5.1 Computational Performance . 47

3.5.2 Validation of Double-dummy Comparisons . 48

3.5.3 Information Score Results . 49

3.5.4 Using Variance Reduction . 49

3.6 Conclusions . 50

3.6.1 Future Work . 51

4 Uncontested Bidding 54

4.1 How Humans Bid . 54

4.1.1 Skill Evaluation . 55

4.2 How Computers Currently Bid . 56

4.2.1 Skill Evaluation . 59

4.3 Reinforcement Learning . 59

4.3.1 Q-learning . 60

4.3.2 Deep Q-learning . 60

4.4 Learning to Bid Unopposed . 61

4.4.1 Definition . 61

4.4.2 Representation . 62

4.4.3 Rewards . 63

4.4.4 Model . 63

4.4.5 System to Learn . 64

4.4.6 Training Data . 65

4.4.7 Experimental Results . 65

4.4.8 Conclusions . 67

4.5 Future Work . 68

4.5.1 Auction Meanings . 68

4.5.2 Competitive Encoding . 68

5 Conclusions and Future Work 71

5.1 Conclusions . 71

viii

5.2 Future Work . 71

Appendix: Scoring in Bridge 73

Bibliography 80

ix

List of Figures

2.1 Sample two-hand diagram . 7

2.2 Sample defensive diagram . 8

2.3 Example double-dummy layout . 9

2.4 Simplest finesse . 10

2.5 Simple squeeze . 11

2.6 Squeezed out of hearts . 11

2.7 Squeezed out of spades . 12

2.8 Simple safety play . 12

2.9 Safety play needed . 13

2.10 Safety play: lost trick . 14

2.11 Example 2NT auction . 15

2.12 Competitive auction . 17

2.13 Tic-Tac-Toe with a winning position . 19

2.14 Tic-Tac-Toe transposition . 21

2.15 Example of strategy-fusion . 24

2.16 Strategy-fusion example: after diamond pitch . 25

2.17 Strategy-fusion example: North follows . 26

2.18 Auctions not the same . 28

3.1 Expert robot play . 32

3.2 Expert robot squeeze . 33

3.3 Subtle defensive error . 34

3.4 End-position . 35

3.5 Good defense . 36

3.6 Incorrect spade pitch . 37

x

3.7 Bad lead . 38

3.8 Lead constraints . 40

3.9 Random choices by side over 10K deals . 42

3.10 Safety play . 43

3.11 Double-dummy and Combined Defender compute times 47

3.12 MCTS per-path baseline and enhanced timings . 48

3.13 Negative inferences . 52

3.14 Negative inferences: alternate . 53

4.1 Partscore bidding . 55

4.2 Slam bidding . 57

4.3 Uncontested auction . 62

4.4 Uncontested bit representation . 62

4.5 Single bid bit representation . 69

4.6 Auction state bit representation . 69

4.7 Example encoded auction . 69

4.8 Example competitive auction bits . 70

xi

List of Tables

3.1 Random choices per deal over 10K . 41

3.2 500-path MCTS choices at trick 4 . 43

3.3 Human defense expectation vs. double-dummy . 49

3.4 Effect of the enhanced MCTS . 49

3.5 Effect of using standard deviation . 50

4.1 Human average IMPs per deal . 56

4.2 Expected tricks actual hands . 58

4.3 Expected tricks opposite strong NT . 58

4.4 Best contracts opposite various hands . 59

4.5 Conservative model openings . 66

4.6 Conservative model responses . 66

A.1 Table of slam bonuses . 74

A.2 Table of doubled and redoubled multipliers . 74

A.3 Scoring examples of making contracts . 74

A.4 Scoring examples of failed contracts . 75

A.5 Table of vulnerabilities . 75

A.6 Example scores for a single board in 13 table duplicate 77

A.7 Example matchpointing for one direction . 77

A.8 Partial IMP table . 78

A.9 Sample 8 board match (T1=Table 1, T2=Table 2) 79

xii

Chapter 1

Introduction

Bridge, Chess, Go: the great mind sports of the 20th and 21st centuries, games of strategy and

skill that require a lifetime of study and play to master. Fascinated by these games, humans have

produced countless articles, books, and newspaper columns devoted to the complexities of these

games. It is therefore not surprising that computer scientists found an intriguing problem space to

explore cutting edge artificial intelligence (“AI”) with a tangible goal of “beating an expert”. As a

bonus, generalized solutions could often then be applied to an array of other problem spaces. A late

addition to the group, Poker also became a game of great interest, for humans perhaps because of

the large sums of money changing hands, for researchers more likely for the psychological aspects

around bluffing as well as the application to certain types of economic problems.

Until the last years of the twentieth century, computing power was too limited to overcome

the complexity of these games. The first breakthrough was only in 1997 when Deep Blue bested

Garry Kasparov, a Grandmaster and World Chess Champion. This was the culmination of years

of dedication at IBM by some of the top researchers, and it also offered new hope of mastering the

other mind sports. And yet they resisted.

It was twenty more years until 2016 when International Go Champion Lee Sedol was bested

by AlphaGo. In a result that shocked many, AlphaGo demonstrated the newly available power of

combining cloud-computing with cutting edge machine learning models.

Then in 2019 Poker was the next to fall, as Carnegie Mellon’s Pluribus out performed profes-

sional players in multiplayer no-limit Texas hold’em, just a year after its precursor Libratus was

victorious in heads-up play.

So that leaves Bridge. At the turn of the century with significant advances in Bridge on

1

the sub-problem of double-dummy, there was hope that Bridge would soon follow. Yet, Bridge AI

programs continue to suffer from significant weaknesses, particularly in the bidding phase. Artificial

intelligence has yet to consistently beat humans; however, the successes of AlphaGo and Pluribus

have encouraged researchers to try and tackle this problem.

In this dissertation, I will begin by recapping the history of Bridge AI and present the reader

with a series of open problems in the two phases of the game, bidding and card play. Solutions will

then be presented and explored with some experimental results.

Code for all the described algorithms will be published under

https://github.com/pmbethe09/Bridge.

2

Chapter 2

Background

In order to fully appreciate the problems still faced in building computer Bridge players, the reader

must have a background in several areas: (i) the card play and bidding phases of Bridge as well

as scoring; (ii) general search, adversarial game tree search including minimax and Alpha-Beta

pruning; (iii) and from machine learning, Q-learning and deep neural networks. In this chapter we

will briefly survey these topics, and then discuss their applications to computer Bridge.

2.1 Fundamentals of Bridge

This Section will provide a whirlwind tour of the basic rules and strategies of Bridge so the computer

scientist may better understand the problems being tackled. Scoring is briefly covered in section

2.1.8 and then more thoroughly in the Appendix.

2.1.1 Overview

Bridge is a partnership card game played by four players, using a standard deck of 52 cards;

2 through 10, Jack, Queen, King, Ace in each of the four suits: clubs ♣, diamonds ♦, hearts

♥, spades ♠. The highest cards in each suit A,K,Q, J are referred to as high-cards. Compass

directions North, East, South, and West are used to identify the players, with the order of the

bidding and the play in that order, clockwise around the table. Partners are seated across from

each other: either N and S, or E and W and are often referred to as a pair or side.

A game or match consists of one or more deals, a unit of play that has no carryover to the next

deal except for overall match score1. This is similar to a multi-game chess match in which each

1except for Rubber which is covered in scoring

3

game starts with a blank-slate. In a single deal a.k.a. hand or board, all of the cards are dealt out

(13 per player), and then the bidding proceeds clockwise from the dealer. Hand is also used to

describe the cards held by a player for a particular deal.

Once the bidding completes, play commences consisting of 13 separate tricks where each player

contributes a single card from their hand to a trick. Then a score is entered based on the number

of tricks won by each side (see Section 2.1.5) and the players proceed to the next deal.

The goal of each deal is to maximize the score received by your side, which may be dependent

on the scoring format, and as we will see the bidding plays a crucial role in achieving that goal.

Much more can be found in The Official Encyclopedia of Bridge [Francis et al., 1995], here we

cover only the bare minimum needed to follow along.

2.1.2 Dealing

In “rubber Bridge” or home games, the cards are physically dealt out, often rotating more than

one deck so as to speed up the time between deals. The player who does the dealing is called the

dealer and is the first to bid in the bidding phase.

In “duplicate Bridge” all the hands to be played are dealt in advance and placed in a physical

board (used as a synonym for deal) that keeps each player’s hand separate; there is also a pre-defined

numbering of boards in regards to the dealer and vulnerability. On board 1, North is the dealer,

after which the dealer rotates clockwise via East, South, West and so on. The vulnerability on each

deal is a concept that factors heavily into how a deal is scored. On a given board either side may

be vulnerable or not, and this is predetermined in a rotation based on the board number.

When the bidding of a board is started, players take their cards from the slot marked for their

direction. During the play of the hand each player plays and turns over cards directly in front of

them so as to keep their hand of cards separate from the others, allowing the same cards to be

returned to the board in the proper slot. This in turn allows the board to be sent to other tables

where players can replay the identical deal.

2.1.3 Bidding

At their turn, a player takes a call by choosing from Pass, Double, Redouble, or any legal bid.

Any player may always Pass which is the same as taking no bid; however, Double is allowed by

a player only when the opponents hold the current highest bid and the contract has not yet been

4

doubled. Redouble is allowed only when the opponents have doubled, and can only be done once

for a particular bid.

A legal bid must be higher than all previous bids regardless of who made them, noting that

the first to bid is unconstrained. A bid consists of one of the four suits as a trump suit (covered in

section 2.1.5), or Notrump (“NT”) coupled with a level [1− 7]. In order for a bid to be higher than

the previous bid, it must either be a higher level or the same level with a higher denomination.

The possible trump suit denominations are ranked from low to high: clubs ♣, diamonds ♦, hearts

♥, spades ♠, and Notrump which indicates that there is no trump suit. Thus 1♣ is the lowest

possible bid and 7NT is the highest.

The bidding, also commonly referred to as the auction, starts with the dealer and continues

with each player taking a call until there have been three consecutive Passes, with the exception

that all four players must have the chance to take a call before the auction can end. If the first

four calls of an auction result in all four players passing, then the deal is a passout and a score of

0 is entered and the players proceed to the next deal.

2.1.4 Contract

Except in case of a passout, the result of the auction is a contract, held by a particular partnership,

which specifies the number of tricks they must win, and assigns either a trump suit or Notrump.

The bidding process also determines which of the players in the team winning the contract is

declarer (the first of the partnership to bid the denomination of the winning contract) and which

is dummy (their partner); the opposing team is called the defenders. By convention, the number of

tricks to be won is stated in terms of the number of tricks beyond a six-trick “book”; for example,

a contract of 4♠ is a commitment to win 10 (4+6) out of the 13 available tricks with spades as

trump.

2.1.5 Play

The player to the left of the declarer leads to the first trick (“the opening lead”), choosing any card

in their hand. Thereafter, the winner of the previous trick leads any card they wish to begin the

next trick. After the opening lead, the partner of the declarer (the dummy) lays their cards on the

table for all to see, and the declarer is charged with playing cards from both hands to maximize

their side’s ability to take the most tricks. Thus the declarer knows the cards in their hand and

in dummy’s hand, but they do not know how the remaining 26 cards are divided between the

5

defenders. Each of the defenders knows their own hand and, after the opening lead dummy’s, but

the defenders do not know which cards are in their partner’s or declarer’s hand.

In a single trick, the players each play one card in sequence. The first player of a trick (the

leader) may play any card in their hand. Each of the remaining players must play a card in the

suit that has been led (by following suit) unless they are void (out of cards) in that suit. If they

are void, they may discard or pitch any card in their hand and are said to show-out of the suit led.

The winner is then determined as the highest card played in the suit led. Or, if there is a trump

suit, any player void in the suit led may discard a trump, commonly known as ruffing or trumping,

and in that case, the highest trump played determines the trick winner (as multiple players may

ruff on the same trick). In a Notrump contract there is no trump suit, thus discards when void can

never win a trick.

Following the last trick, the number of tricks won by the declaring side is compared to the

contract, and a score is obtained (see Section 2.1.8).

2.1.6 Claims

At any point during the play, declarer will often speed up the game by claiming all or some of

the remaining tricks. This is done by stating a line of play, which is an ordering of the cards in

declarer and dummy which is guaranteed to succeed despite any unknowns in the distribution of

the opponents’ cards. If accepted, the deal is immediately over, the cards put away, and a score is

entered combining the tricks played and the claimed tricks. In the rare case where a claim is not

accepted, the Director is called to adjudicate (the Bridge equivalent of a referee).

Occasionally a defender may also claim if they are known to possess a certain number of winning

cards in their own hand with the caveat that they cannot speak for their partner or require them

to play any ordering of cards.

2.1.7 Duplicate vs Rubber

When making decisions in Bridge in both the bidding and the play, it is important to know the

form of scoring in use, as that has significant consequences on expected-value calculations. The two

major forms of contract scoring are duplicate where each hand is independently scored and rubber

where there is some score carryover from previous hands. Each then has several variations on how

contract scoring relates to match scoring. In modern times, almost all articles involving Bridge are

about duplicate. Additionally, almost all of the available data on played hands is from duplicate

6

team International Matchpoint (“IMP”) scoring, thus we ignore rubber for our experiments and

focus on duplicate IMPs.

2.1.8 Scoring

The score for each hand is based on the contract and the number of tricks won by each pair. If

declarer wins at least the number of tricks that were contracted for, then the pair will earn a positive

score on the hand, and the defenders will earn the corresponding negative score. If declarer takes

fewer tricks than what was contracted for, the defending pair will earn the positive score on the

hand and the declaring pair will earn the corresponding negative score.

An important consideration is that contracts at a high enough level may earn additional scoring

bonuses, which becomes part of the nuances of bidding. If a side bids 7 and thus contracts for all

of the tricks this is called a grand-slam and if made earns the maximal bonus available. The next

highest bonus is a a bid of 6, a small-slam or slam. A game bonus is awarded for a bid of at least

3NT , 4♥, 4♠ and 5♣, 5♦. All lower contracts are called partscores. Overtricks are any tricks made

in addition to the number required, the importance of which depends on the form of scoring.

More thorough coverage of scoring can be found in the Appendix.

2.1.9 Diagrams and Nomenclature

A typical diagram involves 1, 2 or 4 hands. Single hand diagrams ♠K4♥ 742♦AQJ6♣KQJ6

are most often used to explore bidding or lead problems.

In the play, as described in Section 2.1.5, each player can see the dummy and therefore has

knowledge of 2 hands.

A diagram showing two paired compass directions (East and West as in Figure 2.1, or North

and South) is used to tackle declarer play problems.

♠AK

♥AKQ

♦AKQJ

♣AKQJ

W
N

S
E

♠ 432

♥ 432

♦ 5432

♣ 432

Figure 2.1: Sample two-hand diagram

Unseen cards are held by the opponents, in an unknown distribution, which is defined as the

7

number of cards each player holds in each suit. We will use these two-handed diagrams often to

give examples. Sometimes these problems also include the bidding, as that makes high card holding

and distributional inferences available.

A defensive diagram such as Figure 2.2 shows one defender plus the dummy, and often the

auction as well.

♠KQ92

♥ J32

♦AQJ102

♣ 8
♠ 84

♥A95

♦K863

♣ 9632

W
N

S
E

South West North East

2♥ P 4♥ P

P P

Figure 2.2: Sample defensive diagram

Finally, Figure 2.3 shows a double-dummy diagram where all 4 hands are given, either for

compactness of a problem, or to examine exact search possibilities.

8

♠ 7632

♥K863

♦ 93

♣Q108
♠AK

♥ 10942

♦ 765

♣AK72

W
N

S
E

♠ 9

♥AJ5

♦AKQ102

♣ 6543

♠QJ10854

♥Q7

♦ J84

♣ J9

Figure 2.3: Example double-dummy layout

‘-’ versus ‘=’ It is often useful to speak of an unknown distribution of cards in a suit through

shorthand. For example, ‘3-0 clubs’ describes either opponent holding all three missing clubs (and

the other none), but with both options available. However, in ‘3=0 clubs with North’, by using ‘=’

the shorthand implies the specific layout of three clubs with North and none with South (so 3-0

is the combination of 3=0 and 0=3). This rule is also applied to player distributions where ‘-’ is

generic and ‘=’ can be used in rank order using ‘♠ = ♥ = ♦ = ♣’. For example, ‘5-4-3-1’ describes

any hand with a five, four, three and one card suit; ‘5=4=3=1’ indicates a hand with five spades,

four hearts, three diamonds and a single club.

Similar to void, describing zero cards in a suit, a singleton is a term for describing exactly one

card in a suit, where doubleton indicates exactly two cards in a suit.

2.1.10 Play Techniques

A finesse is a technical play by any player that attempts to take an extra trick conditional on a

certain card being held by a specific opponent. For example, in Figure 2.4, West is on lead in a

Notrump contract and leads any spade, with North then playing small (shorthand for playing any

smaller card in the same suit or any card smaller than the 9). The opponents are already known

to hold ♠KT54, but it is unknown as to how they are distributed.

9

♠ ?4

♥ –

♦ –

♣ –
♠ 32

♥ –

♦ –

♣ –

W
N

S
E

♠AQ

♥ –

♦ –

♣ –

♠ ??

♥ –

♦ –

♣ –

Figure 2.4: Simplest finesse

Of course, while the Ace will always win, in this example playing the Queen will also win

whenever the King is with North, but lose when South holds it (as South gets to play the King

after seeing the Queen played). If the finesse is successful, the declarer will then cash the Ace,

playing a card which is guaranteed to take a trick, netting two tricks instead of just one.

A squeeze is an ordering of plays which forces one or both opponents to concede one or more

additional tricks from the number that were previously available. This most often happens for the

benefit of the declarer against the defense, but can on occasion occur the other way. Recognition

and execution of a squeeze by a human is considered advanced to expert level play.

10

♠ 4

♥ 2

♦ –

♣A
♠ –

♥QJ10

♦ –

♣ –

W
N

S
E

♠KQ

♥A

♦ –

♣ –

♠AJ

♥K

♦ –

♣ –

Figure 2.5: Simple squeeze

In Figure 2.5, North on lead in a Notrump contract can count two obvious winners via the ♣A

and then South’s ♠A. However, observe what happens when North starts with the ♣A, it turns

out that East has no winning choice:

• If East discards the ♥A, dummy discards the ♠J and North as in Figure 2.6 can take South’s

♥K and ♠A.

♠ 4

♥ 2

♦ –

♣ –
♠ –

♥QJ

♦ –

♣ –

W
N

S
E

♠KQ

♥ –

♦ –

♣ –

♠A

♥K

♦ –

♣ –

Figure 2.6: Squeezed out of hearts

11

• If instead East discards the ♠Q (or King), South discards the ♥K; North can now take

dummy’s ♠A then Jack as shown in Figure 2.7.

♠ 4

♥ 2

♦ –

♣ –
♠ –

♥QJ10

♦ –

♣ –

W
N

S
E

♠K

♥A

♦ –

♣ –

♠AJ

♥ –

♦ –

♣ –

Figure 2.7: Squeezed out of spades

Where it seemed that NS would only take 2 tricks (♣A, ♠A), all 3 are taken by squeezing East.

There are many different variations on squeezes, the one shown being a simple positional [Love,

1968].

A safety play is a technique used to guarantee that a certain number of tricks are taken, typically

at the expense of a chance to win more tricks. For example, EW playing in a Notrump contract,

and ignoring the other suits, declarer needs four tricks from clubs to make in Figure 2.8.

♠ –

♥ –

♦ –

♣A10642

W
N

S
E

♠ –

♥ –

♦ –

♣K973

Figure 2.8: Simple safety play

A natural play might be to take the King and then Ace or vice-versa, which leads to 4 or 5

tricks whenever both hands have at least one club. However, look at what happens if the ♣K is

taken and the layout is as Figure 2.9; the ♣QJ will take two tricks reducing declarer’s tricks to 3.

12

♠ –

♥ –

♦ –

♣QJ85
♠ –

♥ –

♦ –

♣A10642

W
N

S
E

♠ –

♥ –

♦ –

♣K973

♠ –

♥ –

♦ –

♣ –

Figure 2.9: Safety play needed

Instead, since declarer wants to guarantee that they win four tricks, they can safety play by

leading the ♣2 from West towards the other hand, then:

• If North discards another suit, East plays the King and with perfect information can play for

3 more tricks;

• If North plays the Queen or Jack, East plays the King and will take 3 or 4 more tricks; or

• If North plays low (the ♣5 or ♣8), East makes the key play of the ♣9.

It is the last option which is the crucial safety play: in normal layouts of 2-2 or 3-1 such as

Figure 2.10, this will often lose a trick to the Queen or Jack that might have been avoided; but if

the layout is as Figure 2.9, four tricks will be secured and the contract made.

On this hand the option is symmetric, the same play could be made by initially leading the ♣3

from East planning to play the ♣T if South follows with a low club.

13

♠ –

♥ –

♦ –

♣ J5
♠ –

♥ –

♦ –

♣A10642

W
N

S
E

♠ –

♥ –

♦ –

♣K973

♠ –

♥ –

♦ –

♣Q8

Figure 2.10: Safety play: lost trick

2.1.11 Bidding Methods

The goal of the bidding phase is to maximize your side’s score on the deal, with some consideration

for the competition’s scoring format (see Appendix). This is where the cooperative nature of the

game is most on display, as the bidding is typically an affair that occurs over several rounds, a

conversation of sorts where a side tries to apply agreed upon rules for selecting bids on the way to

the goal.

2.1.11.1 High Card Points

Using High Card Points (“HCP”) is a common method (but not necessarily the best method) for

evaluating the strength of a hand. Using values of A=4, K=3, Q=2, J=1 made popular by Goren

[Francis et al., 1995], one can convert a hand into a number of points so as to apply a set of bidding

rules.

2.1.11.2 General

An opening bid is the first non-Pass in an auction, and is less about suggesting this exact contract

and more about conveying some information about the hand held in both distribution (defined in

Section 2.1.9) and strength (the number of high-cards as an initial estimate of the number of tricks

that the hand can take).

14

♠Q9432

♥ 7

♦ 97652

♣Q3

W
N

S
E

♠AK85

♥KJ63

♦KQ

♣A52

North East South West

P 2NT P 3♥1

P 3♠ P 3NT

P 4♠ P P

P
1 Jacoby transfer to 3♠, showing 5+ spades

Figure 2.11: Example 2NT auction

In example 2.11, East opens 2 Notrump, showing 20-21 HCP and a somewhat balanced hand

(typically no more than one 2-card suit). While this might be the final contract if everyone passes,

the bid is selected to convey information to their partner and allow consideration of whether the

side should bid to a game or even try for a slam (see 2.1.8). 3♥ is a conventional Jacoby transfer

(we will discuss conventions next) which shows 5 or more spades and requests a response of 3♠

but also forbids a call of Pass2. This is a wide ranging bid whose specifics will be clarified via a

subsequent call. 3♠ was bid as requested and then 3NT clarifies that West has exactly 5 spades

and believes their side may be able to make game3. Finally East, aware of the trick-taking power

of a 9-card spade fit chooses 4♠ as the contract rather than passing 3NT .

This simple auction offered examples of:

1. An Opening Bid: 2NT - starting the conversation by describing the hand, unlikely to be the

final contract;

2. A Conventional Response: 3♥ - continuing the conversation and requiring a forced 3♠ or

limit set of responses;

3. A Choice of Games: 3NT - which completes the two-step description started with 3♥; and

4. A Decision Bid: P or 4♠ - information having been passed, a final choice to maximize expected

score.

2.1.11.3 Conventions

While the goal of bidding is to reach the best contract, that does not mean that every bid should

be made with the expectation of playing such a contract. As such there are many intermediate

2Forbids in the sense of partnership agreement, Pass of course is legal.
3the number of tricks for a game bonus

15

bids chosen to facilitate the passing of information. Some of those bids may be conventions.

A Bridge convention is an agreement about a call or a set of related calls which may or may not

indicate anything about the suit bid, but rather convey some previously agreed meaning [Francis

et al., 1995]. Conventions to be played must be agreed by partners before play begins and must be

disclosed to their opponents. For some conventions the disclosure is done by providing a convention

card indicating artificial agreements, as well as alerting the opponents before or during the auction

that something unusual may have come up.

Some conventions and bids are barred from Bridge tournaments being regarded as destructive

to the game. This is important to mention only in that computers which choose to invent their own

system may run afoul of these kinds of restrictions if trying to play against human competition.

When a conventional bid occurs, an opponent at their turn to bid may ask questions of the

partner of the player who made the conventional bid.

Examples of various common conventions in use:

• Stayman: a bid of 2♣ over partner’s 1NT opener which is forcing, says nothing about clubs,

and asks partner to bid 2♥ with 4 hearts, else 2♠ with 4 spades, and in all other cases 2♦.

• Jacoby transfer: when partner has opened 1NT (or 2NT), a bid of 2♦/2♥ (3 over 2NT) saying

nothing about the suit bid, but showing the next suit up (♥/♠) and forcing partner to bid

that next step. The responding hand may then pass, or otherwise continue the description

of their hand. At the expense of a natural 2♦ bid, this allows for a wide range of responding

hands to describe themselves in a conversation while keeping the bidding low.

• 2/1 game-forcing: after an opening bid of 1 of a suit, a bid of 2 of a lower-ranked suit being

forcing to game (defined in Section 2.1.8).

In the examples above the common word forcing was used, which indicates a bid that by

agreement cannot be passed by their partner even though the rules allow it.

Opening lead and carding conventions are also routinely employed by defenders to communicate

information about the cards in the suit led or sometimes the rest of their hand, but just as with

bidding conventions, these agreements must be fully disclosed before and during the play.

2.1.11.4 Constructive vs Competitive

The auction in Figure 2.11 was an example of a constructive or unopposed auction as one side did

all the bidding while the other stayed silent and passed.

16

A competitive auction on the other hand might look something like the auction in Figure 2.12.

Note that X is a common abbreviation for double, and XX for redouble.

North East South West

1♠ 2♥ 2♠ 4♥

4♠ 5♥ X P

P P

Figure 2.12: Competitive auction

Where all of 4♠, 5♥ and X fall in the decision bid category with players trying to decide which

action will maximize their side’s score. Either bid may have included the possibility of a save where

one side bids to a possibly unmake-able contract with the expectation that the penalty conceded,

even when doubled, will be less than the other side’s score for a making game.

Since a competitive auction can benefit the overcalling side, why aren’t all auctions competitive?

For every bid taken there is always a risk of being doubled and conceding a penalty, and that risk

goes up the higher the bidding level and the more bids that have already taken place. So each

bidder must weigh the risk/reward of bidding over passing when entering an auction.

2.2 Computer Games

A quick background in how computers play games.

2.2.1 Simple Search

When solving a problem such as the classic one of legally placing Queens on an N by N chessboard,

labelling a map, or finding a route between two places, there are no opponents.

These operations are easy to implement effectively on a computer, as they only require a method

of enumerating the states and a verification function to test if the result is still valid. Formally,

• I: initial state

• s: the current state

• G(s): goal state

• A(s): actions available in s

17

• T(s, a): applies a to s and provides a new s′

Where G tests if you’ve reached the goal state of the search (e.g. a route between two places),

A provides the actions from a given state and T applies an action to a state to provide a new

state. With this, any search such as this can guarantee a solution if one exists through a standard

algorithm.

function Search(s, G, A, T)

if G(s) then

return solution

end if

for all a in A(s) do

if Search(T(s, a), G, A, T) is solution then

return solution

end if

end for

return failure

end function

However, the number of possible moves which may be searched through is exponential in size,

such that the search can take a long time. A set of good heuristics can give a better guess as to

which move to try, thereby speeding up the search, as once a single solution is found, the search is

over.

2.2.2 Minimax in Games

Unfortunately, when playing a game such as Chess or Bridge, a simple search is not enough, as for

each move that one player makes, their opponent will always try to make the best counter-move.

Thus for every good move that one player makes, one must back up to each previous opponent

play and try all of the other options to see if those would have been better from the opponent’s

perspective.

Let us examine the easiest example, using Tic-Tac-Toe as in Figure 2.13:

18

? O

? X

X O

Figure 2.13: Tic-Tac-Toe with a winning position

At X’s turn, a human can clearly see that playing in the top or middle left box will deliver

victory, because O is unable to block in two places. But how can a computer discover these two

plays are the only winning ones? Unlike the N-queens search above, at each turn when considering

X’s move, the computer must also try each counter play for O, assuming that the opponent will

play optimally.

Consider if X tried to play in the bottom right corner, if O plays anywhere but top left, X wins.

A blind depth-first search would have its solution, but not an adversarial search. A search for a

solution must backtrack to the last play for O and try every possible play. In this case, top left

would be found as blocking the win, so the search must continue.

More formally, borrowing from [Russell and Norvig, 2009]:

• S0: the initial state

• s: the current state

• Player(s): current player

• Actions(s): legal moves

• Result(s, a): provides the new state from applying a to s

• Terminal(s): indicates if the game is over

• Payoff(s): indicates the payoff for a terminal game

Where we wish to compute

Minimax (s) =

Payoff (s) if Terminal(s)

max(a)∀a ∈ Minimax (Result(s, a)) if Player(s) = MAX

min(a)∀a ∈ Minimax (Result(s, a)) if Player(s) = MIN

19

For games like Go or Chess the Payoff (s) is always [+1, 0, 1] to indicate win, tie or draw.

Whereas for Bridge it is wider ranged in the number of tricks out of thirteen taken by each side.

This type of search can also be represented by a minimax tree, where X’s moves are or nodes,

as only a single valid solution is needed at those, but O’s moves are and nodes, as X’s previous

winning move must work for all of O’s possible moves. X is considered the maximizer as they are

trying to win, while O is the minimizer, as from X’s perspective they are trying to force X to lose.

Each game position or node of the tree is evaluated using Terminal to see if it is a draw or win

for either player. If so it is a leaf node, if not it is an internal node where all possible moves of the

current player must be considered (Actions). When choosing a best move for a player, the goal is

for all leaves after that selection to lead to the best possible outcome. Put another way, you cannot

evaluate whether a move to an internal node is a good one until the chain of follow up moves ends

in a win/lose/draw outcome.

This search space is much larger than a simple blind search. In general, verifying a successful

plan requires presenting a tree with branches for every possible move for O; the problem is thus

not in NP (the class of problems whose solution verification takes polynomial time). Instead, the

unfortunate consequence of this is that none of the improvements on state-space search by using

local search or other optimization algorithms are useful.

2.2.3 Alpha-Beta Pruning

Minimax provides an important framework for computing optimal decisions in an adversarial game,

if only there was enough computing power. For example, chess has an average branching factor

of about 35, so in a typical 40-move limit per-player game that yields 3580 nodes to evaluate, an

impossible problem [Russell and Norvig, 2009].

Alpha-Beta pruning is an enhancement to minimax search which prunes nodes early when it

discovers that there is no reason to continue searching [Knuth and Moore, 1975]. By eliminating

whole sections of a minimax tree, the total number of nodes can be reduced to a more reasonable

number for evaluation.

Alpha corresponds to a global known value that max can already achieve, where Beta is the

value that min can confirm. If at any point at a max-node (or-node) the maximizer can play to

a better outcome than Beta, the search is abandoned, as min will make a better choice earlier in

the search tree. The same is true when evaluating and-nodes, if the minimizer has a play which

will lead to a lower option than Alpha, the search is abandoned, as max will make a better choice

20

higher in the tree.

2.2.4 Transposition Tables

For Tic-Tac-Toe, Alpha-Beta pruning plus the addition of transposition tables makes it possible to

quickly compute optimal moves. A transposition table takes advantage of symmetries in positions

to eliminate redundant searches. For example, perhaps in the previous position in Figure 2.13, X

was in fact evaluating potential second moves on a board of X in the center and O directly below.

An alternate set of moves might reach Figure 2.14.

O

X

O X

Figure 2.14: Tic-Tac-Toe transposition

However, it would be a waste of computation to continue any further as one can clearly see this

is just a longitudinal transposition of the previous position in Figure 2.13.

2.2.5 Evaluation Functions

Transposition Tables and Alpha-Beta pruning allow Chess and Go to evaluate to additional depths,

but this is still not enough to do complete searching of the game-tree. The general solution, is to

employ an evaluation function which predicts the value or goodness of a game state since reaching

a terminal state is not feasible. This is then combined with a limited-depth minimax tree search

to predict the best move for a particular state.

2.2.6 Imperfect Information

Tic-Tac-Toe, Chess and Go, are all examples of a perfect information game. At any point a player

knows the exact state of the game, both their pieces and their opponent’s. The complexity of these

games comes from both the branching factor and the depth of the game-tree searches necessary

to consider a move. If a player considers the next three moves each for both players (known as

6-ply), the game may still be wide-open. Thus the complexity and skill of the best programs is in

evaluating each new board based on a move.

21

Bridge has a much shallower search space, as most auctions involve a player taking only a few

bids, and the card play always terminates after each player plays all 13 cards. Where Bridge differs

from the others is information. Throughout the hand there are hidden pieces of information that

must be considered: all three hands during the bidding, and then the two other hands during the

play (assuming you are not dummy). This type of imperfect information or partially observable

game requires additional machinery to attempt to select an optimal move.

2.2.7 Monte Carlo

One method of move selection in an imperfect information game is simply to enumerate all possible

realities, or slightly better all logically possible belief states by eliminating inferentially impossible

distributions. Once this set is available, apply an adversarial search to each perfect information

problem, then compute the expected value of each move based on the outcomes in each belief state.

Given a set of deals s occurring with probability P, we wish to compute

argmax
∑

s

P (s)Minimax (Result(s, a))

Of course for any game of interest the total number of such states is too large, so instead

a random subset of these belief states or paths must be drawn and then solved. This Monte

Carlo simulation attempts to balance choosing enough possibilities to evaluate to produce a decent

solution versus evaluating too many, which may use more time than is reasonable.

Monte Carlo Tree Search (“MCTS”) is the application of this Monte Carlo technique to a

problem where tree search is then applied to the perfect information problem (covered extensively

in Chapter 3).

2.2.8 Conformant Planning

Conformant planning is the procedure of generating a plan under uncertainty which will succeed

regardless of the true state of the world [Hoffmann and Brafman, 2006]. The initial problem is

transformed from one with uncertainty to a state space search, where the current state is actually

a set of belief-states about the possible worlds. This is somewhat similar to Ginsberg’s Lattice

approach, which will be covered later in Section 2.3.2.2.

DTAC [Bethe, 2010a] is a type of conformant planning algorithm which finds a claim in the

game of Bridge by reducing the adversarial and incomplete information game to a simple depth-first

22

search with quick solution. This can also be useful for an Alpha-Beta search by quickly providing

and reinforcing values of alpha and beta to assist in tree pruning.

In related work, Russell and Wolfe explored a new method of solving imperfect information

games in Kriegspiel via their belief-state AND-OR search in [Russell and Wolfe, 2005]. This tech-

nique showed solid success on a limited database of checkmate positions for 3-ply and 5-ply searches.

It is similar to DTAC only in that it explores a method of securing a guaranteed plan to an

adversarial game. Unlike DTAC, it uses belief-state space to do an exact search up to resource

limitations.

2.3 State of Bridge Play

Since the first fully automated Bridge program, Bridge Baron, was published [Throop, 1983], there

have been large strides in AI Bridge. Bridge has the three distinct types of problems which we have

covered: bidding, single-dummy play (the normal imperfect-information problem), and double-

dummy play (assuming perfect information). Each of these have different rules, objectives, and

inferences that can be drawn, and research has tended to focus on only one aspect at a time.

Early work on Bridge tended to follow other fields that looked for rule-based systems as a way

to encode Bridge player heuristics and planning techniques to solve the single-dummy play problem

[Throop, 1983; Smith et al., 1998; Frank et al., 1998]. It is also believed that a basic database of

bids was used in similar rule-based bidding engines.

2.3.1 Partition Search

Double-dummy is the Bridge term referring to a situation with perfect information, and as such,

an exact solution, can be solved for using the previously discussed technique of adversarial search

with Alpha-Beta pruning. However, a double-dummy solver with only Alpha-Beta was still not fast

enough. Considerable work was done by Ginsberg to build on existing adversarial search pruning

techniques, and by adding in his partition-search algorithm which significantly reduced the number

of moves to consider in a lossless way [Ginsberg, 1999; Ginsberg, 1996], solutions to the double-

dummy problem could now be computed very efficiently. Armed now with an exact solver for the

perfect information problem, a Monte Carlo simulation where each path was represented by an

exact distribution of the cards could be used for move selection. At each play the card selected is

the one with the maximal expected value over the layouts that have been analyzed via the solver.

23

2.3.2 Limitations of Monte Carlo

The Monte Carlo algorithm has a number of shortcomings which can limit the effectiveness of the

technique. Firstly, the choice of move is based on a statistical estimate and may fail to account for

outlier distributions. More subtly, there is the problem of strategy fusion [Frank and Basin, 1998]

which is the following: the algorithm estimates the value of a move in a state of partial knowledge

as its expected value averaging over all complete knowledge elaborations of that state. But there

are circumstances where that estimate is not valid, because it assumes that all future moves can

be chosen correctly, whereas they may in fact depend on information that will not be known.

2.3.2.1 Strategy-fusion

♠KJ10

♥A

♦ –

♣ –

W
N

S
E

♠A98

♥ 2

♦ –

♣ –

Figure 2.15: Example of strategy-fusion

In Figure 2.15, West is declarer, on lead to take the rest of the tricks. The opponents are known

to hold 4 hearts, 1 diamond, and 3 spades including the queen. Due to earlier play (for example,

South discarding on diamonds), North is known to hold the remaining diamond. If spades are 2-1,

the queen will always fall, but if they are 3-0, which way should declarer guard for the finesse?

Playing the King of spades first (and then the Jack) will only succeed when North holds all three

spades, but playing to the Ace fails in that case. Conversely, playing to the Ace succeeds when

South has all three spades, but fails when North turns out to have them.

A sound declarer would always make this contract without the need to guess, by making a

“discovery play”. By taking the Ace of hearts first, declarer learns what is needed for the next play.

• If North discards a diamond, then all four hearts are known to be in the South hand, and

by inference the queen and all of the spades are in the North hand as shown in Figure 2.16.

Declarer now playing with perfect information takes three spade tricks via the “marked”

finesse through North;

24

♠Q54

♥ –

♦ –

♣ –
♠KJ10

♥ –

♦ –

♣ –

W
N

S
E

♠A98

♥ –

♦ –

♣ –

♠ –

♥ 1075

♦ –

♣ –

Figure 2.16: Strategy-fusion example: after diamond pitch

• Alternatively, if North follows to the first heart, then the North hand must contain [0 − 2]

spades. This is known by inference, as North is also known to hold at least one diamond, and

started with only four cards. Declarer no longer needs to guard against North holding all 3

spades as the layout in Figure 2.16 is impossible. Accordingly they play the ♠T to dummy’s

Ace. If both players follow then the Queen will fall on the next round under the King. If

instead North has revealed the position by discarding, declarer is able to take the “marked”

finesse coming back as the position is known to be Figure 2.17.

25

♠ –

♥ 107

♦ 5

♣ –
♠KJ10

♥ –

♦ –

♣ –

W
N

S
E

♠A98

♥ –

♦ –

♣ –

♠Q54

♥ –

♦ –

♣ –

Figure 2.17: Strategy-fusion example: North follows

From the perspective of a Monte Carlo approach, either choice of ♠T , ♥A always succeeds.

In 3=0 splits where North has the queen (Figure 2.16) the finesse is taken immediately, as the

double-dummy solver “knows” it will work. In other cases, the solver plays the Ace and also takes

all the tricks. When taking an expectation over possible leads, the King of spades fails when the

queen is with South, but the other two leads of the Ace of hearts and the Ten of spades work

equally (taking the Ten and Jack as equals). So one of the two “winning” options is chosen at

random, and 50% of the time, Monte Carlo has chosen the inferior line of ♠T , which may fail in

11% of the actual distributions.

2.3.2.2 Lattice Methods, and Squeaky Wheel Optimization

In an attempt to overcome strategy-fusion, Ginsberg employed a lattice method for solving binary

decision diagrams [Nielsen, 2001]. This technique worked and was found to be useful for small

end-positions, but as the number of cards remaining increased, the time increased as well (to over 1

minute for 8-card positions). However, Ginsberg modified this technique using achievable sets and

a modification to the selection order called squeaky wheel optimization [Joslin and Clements, 1999],

which created an approximation of the problem that was solvable in reasonable time. Profiling this

technique against GIB’s Monte Carlo engine showed a small but significant improvement in the

play. This is the method that is currently used by GIB, but it is still an approximation.

26

2.3.3 General Bidding

As previously suggested, one can informally divide bids into several categories including opening

bids, intermediate bids used for information passing and gathering, and final or decision bids.

Analysis of existing programs show that they perform fine at opening bids, as they simply

involve matching a set of criteria with a database of rules to apply.

Existing AI also displays strength at making decision bids, particularly in competitive auctions,

as enough information has been passed that a Monte Carlo simulation can be very effective in

selecting a winning bid.

It is the set of in-between bids, the planning and conversational bids where problems still exist.

This topic will be expanded upon later.

2.3.4 Bidding Systems and Meanings

In Chess or Go when a move is made, the player need not explain why they chose the move nor

what it means. In Bridge card play there may be agreements about what card is led from length

or touching honors as well as certain other types of signals, but the declarations on these are fairly

straightforward.

Bidding however, requires a much more complete level of disclosure. Other than in an unusual

auction, most bids are expected to be explainable through a standard set of terminology. Whether

an opening 1♥ bid shows a Standard American style 5 or more hearts and 11-21 HCP or something

completely different, the opponents must receive all agreed upon information even if one or both

opponents plans to pass. Thus it is important that for any machine learning algorithms to be

usable in real competition against computer or human, semantic knowledge of the meaning of each

bid must be made available.

2.3.5 Recent Work

Recent research on Bridge has primarily looked at improving bidding through Machine Learning

(”ML”). Thanks to AlphaGo [Silver et al., 2016], an interest has been renewed in this area with

several recent papers that explore similar methods of deep reinforcement learning applied to Bridge.

Yeh et al. (2018) investigated using a deep Q-network to learn constructive bidding. They tried

two tracks: (1) strongly hinting opening-bids that conform to a human system; and (ii) allowing

the model to drive all bids. They explored convergence speeds for several human-designed systems

27

including Standard American Yellow Card (“SAYC”), Precision and Natural-5542. The authors

note the importance of balancing exploration vs exploitation for achieving best performance, and

report very encouraging results when compared to Wbridge5. Importantly they also address the

need to produce semantic information as bid meanings must be explainable to opponents. Training

data consisted of 100,000 randomly generated deals plus another 40,000 for validation and testing.

Unfortunately the code, developed in MATLAB, is unpublished so we were unable to exactly verify

their results.

Rong, Qin and An (2019) followed on that work, to investigate the more challenging problem of

competitive bidding. They worked to train two networks: one which took as input the bidder’s cards

and the auction history to output probabilities of each other player’s cards; the second augmented

the bidder’s cards and auction history with the estimate of partner’s hand produced by the first

network. This second input state was modeled as a 318-bit map (9 per bid) plus an additional

52 bits each for the bidder and partner’s hand and 2 more for the vulnerability. Training data of

one million deals was obtained from the Vugraph Project [Sarantakos, 2020] and augmented with

double-dummy analysis. Strong results for the trained model were reported; however, there is no

published code available for verification.

Gong, Jiang and Tian (2019) also attempted to learn all aspects of bidding; however, their 175-

bit representation of the bidding history does not seem to differentiate between which partner has

made a double or redouble. For example, the auctions in Figure 2.18 would be encoded identically

to each other, yet they are two very different auctions which must be differentiated. Training data

consisted of 2.5 million randomly generated deals augmented with double-dummy analysis. As with

the other recent work, no code was made available for inspection.

West North East South

1♦ P P X

P P 1H

(a) Long auction

West North East South

1♦ X 1H

(b) Short auction

Figure 2.18: Auctions not the same

Legras et al (2018) went in a different direction, using Inductive Logic Programming to model

a simplified problem of determining whether to open the bidding or not when given a limited hand.

They were able to engage four expert bridge players to label a few thousand hands which qualified

28

for the experiment, split into several different data sets. The authors report some success for this

sub-problem and we hope to see continued success as the problem size expands.

There were also a few papers attempting to revisit issues with the play of the hand including

[Cazenave and Ventos, 2019] which explored a new search algorithm in place of MCTS and [Ventos

et al., 2017] which explored how better random seed selection for WBridge5 could improve results

in the play. The latter is a concept that will be explored in Chapter 3 although with a different

proposed solution.

Each of these works showed good promise towards the goal of building an AI to the equivalent

of an expert Bridge player, and we hope to build on these in the coming chapters.

A survey of research prior to 2010 is covered in [Bethe, 2010b].

2.3.6 Current Programs

As with Chess, Bridge saw many attempts at commercial software, with perhaps Bridge Baron

[Throop, 1983] having the most early success. GiB is the commercially available program that came

out of Ginsburg’s previously mentioned work; it is available as an opponent on BridgeBase.com, but

it no longer actively competes. Over the last ten years, several programs including Jack, WBridge5

and SharkBridge have been crowned champions of the World Computer Bridge Championships

(“WCBC”), these programs are rumored to be written using a customization of the Monte Carlo

and double-dummy techniques first proposed by Ginsberg [Russell and Norvig, 2009]. However,

exact details of these programs are proprietary, and were therefore not available for review and

analysis.

2.4 Advances with Machine Learning

2.4.1 AlphaGo

AlphaGo [Silver et al., 2016] demonstrated that for a discrete state-space search, deep Q-learning

was an effective way of learning an evaluation function for a possible Go-board after a series of

min-max moves. This prompted researchers for several games, including Bridge, to investigate if

the same techniques could be used (as highlighted in Section 2.3.5).

AlphaGo was a large undertaking employing close to 50 engineers and researchers over several

years. The great breakthrough of AlphaGo was the use of deep reinforcement learning as a method

of computing two evaluation functions. The value network is a neural network used to predict

29

the expected winner from a board state. The policy network then used that network to train a

model for selecting the next move in concert with a limited-depth tree search. These networks were

bootstrapped with a large corpus of previously played amateur games where a series of positions

and the eventual winner were already known. After that, self-play was used to continually train

and refine these models. By playing millions of games, these complex neural networks could extract

learning features from the boards that were more likely to lead to a particular outcome.

The result of this investment was a 4-1 victory over one of the top-ranked players in the world,

utilizing as many as 1900 CPUs and 280 GPUs during the match [Silver et al., 2016].

AlphaZero was the next iteration of these techniques skipping over bootstrapping and using

an improved algorithm plus new Tensorflow processing unit hardware. Responding to criticism of

the computing footprint used in AlphaGo, the new iteration required a much smaller footprint to

play with (4 TPUs and a single 44-core CPU). The AlphaZero model was extended to other games,

convincingly defeating the top programs in both Chess and Shogi in 2017 [Silver et al., 2018].

2.4.2 Poker

Another game now bested by AI is no-limit Texas Hold’em. Libratus [Brown and Sandholm, 2018]

thoroughly defeated four professional players over a 20 day tournament of heads-up play. A primary

challenge of no-limit as opposed to limited betting, is a state space that is much too big to solve.

Building on breakthroughs in limited Hold’em using counterfactual regret minimization (“CFR”),

Libratus combined a method to reduce the early stages of play to a solvable sub-game with a Monte

Carlo CFR to overcome this.

Not long after, the solution was extended to cover multiplayer no-limit Texas Hold’em as

Pluribus [Brown and Sandholm, 2019] defeated a group of human professionals in a similar type of

competition.

30

Chapter 3

Improving Move Selection using

Monte Carlo

While there has been significant recent research in the unsolved problem of Bridge bidding, there

has been little on the play phase of the game. In this Chapter we re-investigate how computers play

the cards using Monte Carlo Tree Search (“MCTS”), and the blind spots that creates. Then we

propose two modifications to move selection which experimentally showed a significant improvement

of 0.05 tricks per deal played. More specifically, in several cases where random tie-breaking leads

to incorrect play, our system can often find the correct move.

3.1 Expert Ability

Thanks to the breakthroughs which allowed for a fast perfect-information double-dummy solver

[Ginsberg, 1996], computer Bridge bots have repeatedly shown impressive expert-level play; con-

sequently, recent research has almost exclusively focused on the bidding phase. Several recent

examples of top-level play can be found in World Computer Bridge Championships (“WCBC”)

articles such as [Levy, 2017].

31

♠ 532

♥AQJ4

♦Q3

♣A653
♠AQ6

♥K8732

♦ 10

♣QJ84

W
N

S
E

♠ J10984

♥ 105

♦ J74

♣K107

♠K7

♥ 96

♦AK98652

♣ 92

West North East South

1♥ P 1♠ 2♦

2♠ X P 3♥

P 4NT P 5♦

P 6♦ P P

P

Figure 3.1: Expert robot play

In the 20th WCBC round-robin, Figure 3.1, Wbridge5 South reached 6♦ after West opened 1♥,

East responded 1♠, and West raised to 2♠. By convention, the lead of the ♣Q shows the Jack but

denies the King, so applying inferences from the bidding, West almost certainly held the ♥K and

the ♠A. Declarer thus won the Ace, played ♦Q to the Ace, finessed the heart Queen and again

found the winning play of a diamond to the 9, thereafter running diamonds to reach the five-card

end-position in Figure 3.2.

32

♠ 53

♥AJ4

♦ –

♣ –
♠AQ

♥K87

♦ –

♣ –

W
N

S
E

♠ J109

♥ 10

♦ –

♣K

♠K7

♥ 9

♦ 2

♣ 9

Figure 3.2: Expert robot squeeze

The last diamond squeezed West, who could not hold both two spades and three hearts. Im-

pressive play that any expert would be proud of, MCTS provided the highest probability sequence

of plays that also turned out to be correct. This and many other such hands can be found in In-

ternational Computer Games Association journals and other write-ups of these tournaments, and

without a deeper analysis, one could be convinced that robots are expert players needing no further

improvements.

3.2 Monte Carlo Tree Search

To achieve these results, Bridge AI employs a variation of MCTS. The Monte Carlo portion involves

converting from hidden to perfect information by dealing out the unknown cards in a way that is

consistent with inferences available from the bidding and the play. The Tree Search is a double-

dummy solver that uses the standard minimax, alpha-beta, and transposition table techniques, plus

partition search to reduce branching factor. This search can provide the number of tricks that will

be taken for each card under consideration. If unlimited time and/or resources were available, all

possible distributions of the unknown cards would be examined. However, that is infeasible, and so

the theory of MCTS is that by dealing enough paths one can produce a set which is representative

of the complete space. In practice that must also balance with the time constraints allowed for the

play of each card, so a balancing algorithm will draw and solve paths until either a set number of

33

paths or a time-limit is reached, then produce the best result available so far.

We previously covered:

argmax
∑

s

P (s)Minimax (Result(s, a))

as the standard equation to compute the optimal move in MCTS where Result is the number of

tricks taken, but Bridge introduces at least two problems to that general solution:

• How are ties broken among equal probability choices?

• What is the goal for which minimax is optimizing?

As we will see these are still somewhat open problems in need of solution.

3.3 Finding Flaws

3.3.1 Subtle Error

♠ 53

♥K105

♦AK95

♣AK52
♠Q1084

♥ 72

♦ 102

♣ J10984

W
N

S
E

♠ 9762

♥ 98643

♦ 843

♣ 6

♠AKJ

♥AQJ

♦QJ76

♣Q73

South West North East

2NT P 7NT P

P P

Figure 3.3: Subtle defensive error

Figure 3.3 shows 7NT on the lead of the ♣J . Expert play might proceed with three rounds of

clubs and the ♠A looking for an easy 13th trick, failing that three rounds of hearts and four rounds of

34

diamonds ending in the dummy. Figure 3.4 shows the position when the fourth round of diamonds

is led, the discards having revealed that East started 4=5=3=1 (and thus West 4=2=2=5).

♠ 5

♥ –

♦K

♣ 5
♠ ??

♥ –

♦ –

♣ 10

W
N

S
E

♠ ??

♥ 9

♦ –

♣ –

♠KJ

♥ –

♦ 6

♣ –

Figure 3.4: End-position

Expert defense in Figure 3.4 is for East to pitch a heart and West to pitch a low spade, into

the position in Figure 3.5. When the ♣5 was not a winner a spade would be led by North, East

would play low, and it is now a 50/50 guess as to which hand has the ♠Q, as declarer does not

know which opponent holds the ♠Q and which holds the ♠9.

35

♠ 5

♥ –

♦ –

♣ 5
♠Q

♥ –

♦ –

♣ 10

W
N

S
E

♠ 97

♥ –

♦ –

♣ –

♠KJ

♥ –

♦ –

♣ –

Figure 3.5: Good defense

Except... when defending this hand, the robots1 are prone to several mistakes. When the ♦K

was led in Figure 3.4, West was squeezed and technically had no winning play. Thus for some

robots, it was equally likely that the ♠T , ♣T or ♠Q were pitched. As discussed above, the ♠T

leads to a 50/50 guess by declarer; however, either of the latter two plays gives away information

allowing declarer to take the remaining tricks without guess.

Similarly and more subtly, on the last diamond trick, East had the uninteresting choices of ♠97

or ♥9 and also picked randomly when in fact a spade was fatal. After a spade pitch from West

and a low spade pitch from East, as in Figure 3.6, declarer has no more guessing to do as West

is known to have exactly one spade and one heart while East has one spade and one club; so the

Queen will fall under the King, regardless of which player holds it.

1tested and verified with all of Wbridge5, Jackbridge, Bridge Baron, GiB

36

♠ 5

♥ –

♦ –

♣ 5
♠Q

♥ –

♦ –

♣ 10

W
N

S
E

♠ 9

♥ 9

♦ –

♣ –

♠KJ

♥ –

♦ –

♣ –

Figure 3.6: Incorrect spade pitch

What is going on here? The same MCTS that led to outstanding play in the previous section

caused the downfall of the robots on this hand. Thanks to the bidding and the play, while declarer

has some unknowns, East and West are playing with perfect information. Thus East and West

know that all plays they make are equally likely to fail and therefore do not matter. Since in

these cases, the standard MCTS tie-breaker for equal-probability moves of random selection fails

to always produce optimal play.

In fact, the robots sometimes play this correctly and sometimes incorrectly, depending on the

choices made randomly. This sensitivity to random number choices is similar to that of [Ventos

et al., 2017]; however, we will propose quite a different solution.

3.3.2 Beginner Mistake

As discussed often on community forums2, perhaps the most frustrating thing a bot can do is to

make a mistake that even a beginner would not.

2e.g. https://bridgewinners.com/article/view/playing-with-and-against-the-gibs

37

♠A10965

♥AQJ

♦QJ

♣K73
♠ 73

♥ 972

♦ 10932

♣QJ104

W
N

S
E

♠K

♥ 8643

♦ 87654

♣ 986

♠QJ842

♥K105

♦AK

♣A52

North East South West

1♠ P 2NT 1 P

3NT 2 P 4NT 3 P

5♥4 P 6♠ P

P P
1 Game-forcing, 4+ spades

2 17+ HCP, balanced

3 Asking: how many do you have of [♠A, ♠K, ♥A, ♦A, ♣A]

4 Answer: exactly 2

Figure 3.7: Bad lead

Thanks to the bidding, East can predict that the NS hands look similar to the ones shown here.

East can infer that the opponents hold all four aces from the fact that NS have bid a slam in spades

without the King. The aces will split two and two between North and South as conveyed by the

5♥ response in the auction. Therefore, MCTS may predict that all choices of opening lead are

equal and select the ♠K. This is a documented flaw in MCTS caused by attempting to compute

a strategy by averaging the results of a series of perfect information solutions. In each double-

dummy outcome the opponent plays with perfect information, which here means playing the ♠A

and catching the ♠K.

In actual play, leading the ♠K is the only choice that would allow declarer to make the slam.

On any other lead, declarer, whether human or robot, would likely win some other suit lead in

38

dummy and proceed to play the ♠Q. When West plays the ♠3, MCTS will show the same thing

that a human declarer would know from the probabilities: that West is more likely to hold King

or K7 than East is to hold exactly the King (and it doesn’t matter what you do with East holding

K7). The highest percentage play of finessing will lose, resulting in a failed slam.

A first thought might be to program a heuristic to prevent leading a singleton King or King of

trumps, but counter-examples can be found where that would be the winning lead.

3.3.3 Equal is not Equivalent

The core issue on these two hands is the reality that a seemingly equal move under MCTS may

not be equivalent in terms of the information revealed to the opponents. This is particularly acute

in cases of asymmetric information as in these two deals, where auction and/or play created an

imbalance between the two sides. What this suggests is that doing an expected value calculation

by simply computing the average expected tricks of a choice is inferior under certain conditions.

3.3.4 Player Construction

This raises a pair of questions: what is the frequency of these random-of-equal choices and what

effect do they have on the number of tricks taken by each side? Note that equivalent cards are

already excluded from this analysis; for example, if a player has to choose from the ♠432 they are

equivalent and this is not considered part of this experiment.

Answering these questions proved somewhat difficult, as a full MCTS player had to be con-

structed and instrumented to record the outcomes of using different random seeds for decision

making. This player needed to:

• Have a method for solving double-dummy problems;

• Have a method for doing constrained dealing;

• Have a database for extracting meaning from auctions; and

• Be able to play Bridge against itself or other robots like GiB/Wbridge5.

A double dummy solver was easy as an open source library DDS was available in C++ [Haglund

and Hein, 2020] and easily adaptable. Similarly, the Dealer program [Uijterwaal, 2020] offered the

ability to propose complex constraints for dealing a set of hands, including HCP, specific cards, or

lengths in a suit and relative lengths between suits. However, the rest of our MCTS player needed

39

construction from scratch, the most difficult part of which required an engine for interpreting

auction and play meanings so as to make constrained dealing inferences.

The overall algorithm to play a card was:

Algorithm 1 Baseline MCTS

function ChooseCard(hand, auction, play, samples)

constraints← InterpretAuction(hand, auction, play)

for all deal in Dealer(constraints, samples) do

for all card, tricks in DDS(deal) do

append tricks to results[card]

end for

end for

avg[card]← Average(results[card])

return card with max(avg[card]) ⊲ Ties broken randomly

end function

In our default setting, the DEALER function generated 100 random deals consistent with the

proposed constraints. We used the DDS and Dealer software discussed above, but InterpretAuction

was original code to produce constraints from the auction history. It consisted of two parts:

• A database which stored meanings for bids such as a 1♠ or 2♠ opening or a 2♠ response to

a 1♠ opening; and

• A matching algorithm which determined what a bid was doing in sequence such as “opening”

or “responding to 1♠”.

North East South West

1♥ P 2♥ P

P P

Figure 3.8: Lead constraints

For example, on lead as East holding ♠KQ64♥ 10♦ 1076♣A8632 after the auction in Figure

3.8, the DEALER function requires producing 100 deals consistent with the bidding. Our

InterpretAuction algorithm would match these bids and might produce the following input for the

dealer program:

40

predeal east SKQ64, HT, DT76, CA8632

condition hearts(north) >=5 && (hcp(north) > 10 && hcp(north) < 17)

&& hearts(south) >= 3 && (hcp(south) >= 5 && hcp(south) <= 9)

produce 100 action printoneline

Once all of these components were available, some engineering in Java and C++ was required

to bring it all together in a program instrumented to be able to count every interesting occurrence

and explain each decision being made.

Our complete MCTS player was then tested in a series of 64 board matches against GiB and

found to be of comparable strength.

3.3.5 Frequency

The effort of constructing the player was worth it, as the results validated the work.

Side Random draws per deal

declaring side 4.1

defense 3.8

Table 3.1: Random choices per deal over 10K

Shown in Table 3.1, a random sample of 10,000 deals demonstrated that there were multiple

situations for every deal requiring a random draw to choose between cards deemed equal (tolerance

of 0.01 tricks) by MCTS. Additionally, there was no clear correlation by side or to the trick in

which the choice might occur (Figure 3.9). Our hypothesis for this is that late in the hand one side

will take most of the tricks and with flexibility in the order chosen, while the other side may often

be out of a suit played with equal choice of discards under MCTS that will not impact the play3.

3As mentioned in Section 3.3.4, adjacent cards ♠432 or equivalent cards such as ♠753 if the 64 have already been

played are already eliminated from this analysis.

41

135791113
0

0.2

0.4

0.6

0.8

1

Tricks remaining

R
an

d
om

d
ra
w
s
(a
v
g)

declarer/dummy
defense

Figure 3.9: Random choices by side over 10K deals

Next, we measured how often a choice between cards that in, algorithm 1, would be judged

to be equal, and thus made randomly, would in fact alter the number of tricks taken. In 10,000

randomized trials we computed the difference between upper and lower bounds of tricks taken on

the same deal and then averaged across all of the deals. The result of this experiment was a net

effect of ±0.15 tricks per deal. Since a single trick may make or break a contract, this is a very

noticeable deficiency in the base algorithm.

3.3.6 Desired Result

In many other games like Chess, the outcome of a game is win, lose or draw, but in Bridge the

result and therefore the goal may vary based on the form of scoring (see Appendix).

In Figure 3.10 after a spade lead to the King, North plays the ♣AK and discovers the bad club

break; however, a 100% play exists to guarantee the contract. A diamond to the Ace and a low

diamond will either:

• Find diamonds 3-2 or a singleton King, taking 3♦ 3♣ 4♥ and 2♠;

• Find East with 4 or more diamonds to the King and vulnerable to a club-diamond squeeze;

• Force West to take the diamond King leading to 3♦ 3♣ 4♥ and 2♠; or

42

• Let West holding 4 or more diamonds duck the diamond King, at which point after the ♦Q

wins, a club can be lost without repercussion leading to 2♦ 4♣ 4♥ and 2♠.

♠A6

♥AKJ3

♦Q643

♣AK6
♠Q8542

♥ 972

♦K1085

♣ 10

W
N

S
E

♠ 10973

♥ 10864

♦ 9

♣ J942

♠KJ

♥Q5

♦AJ72

♣Q8753

North East South West

2NT P 4NT P

6NT P P P

Figure 3.10: Safety play

This is an example of a safety play, as discussed in Section 2.1.10, where one sacrifices the chance

at overtricks to increase the probability of making the contract (or here guarantee). However, this

is not the move selected by the robots based on the probabilities in Table 3.2.

Cards Avg tricks Standard dev.

♥Q 9.21 ± 0.4

low♣ 9.21 ± 0.4

low♦ 9.0 ± 0.0

Table 3.2: 500-path MCTS choices at trick 4

Here base MCTS selects the move with the highest average number of tricks from each of the

sampled paths, but that is not the right choice if the form of scoring is IMPs (see Appendix). There

is a premium in IMP scoring for making your contract, thus the marginal utility of each trick is

not the same and needs to be accounted for when selecting moves.

43

3.4 Improvements

The data clearly indicating a real problem for random selection, a number of solutions were consid-

ered as alternate methods of tie-breaking. Additionally, we propose modifying the goal of declarer

making (or the defense beating) the current contract to take into account the variance of move

choices.

3.4.1 Sub-simulation

One possible solution might be to run an inner MCTS. For each deal of the outer Monte Carlo

simulation, run another MCTS from the opponents’ perspective, using their cards and auction and

play knowledge to simulate their belief-states and then compute results for all of the plays being

considered.

This approach was examined in general by [Goodman, 2019] for Hanabi, a Japanese cooperative

card game, and found that the problems of strategy fusion and non-locality (discussed in 2.3.2.1)

still persist. These issues arise as information known only by the current player leaks into the

opponent’s predicted strategy.

We also find two flaws for the case of Bridge and our example problems. The first problem is

computational: double-dummy searches taking approximately 50ms per path for the first trick and

30ms for the second trick (Figure 3.11) are prohibitive for any reasonably sized sub-simulation. At

100 paths in the base algorithm, this is 5s for the initial round of play and acceptable. In fact

more paths could be considered, but another factor of 100 or more for a sub-simulation would be

unacceptable. Second and perhaps more important here, is that it doesn’t solve the first problem

presented in Section 3.3.1. In that case in the sub-simulation, declarer would always correctly guess

the location of the ♠Q (in Figures 3.4-3.5) so it provides no help in determining which card to play.

3.4.2 Learning

Modern AI demands that Machine Learning be considered for any new problem, but here it runs

into issues. Unlike the limited success of the full double-dummy ML solver in [Mossakowski and

Mandziuk, 2009], here we wish only to pick the best among equals given our knowledge of the

current hand and the trick in progress.

Unfortunately, we lack an algorithm that can determine whether one choice is better than

another. For example, in the hand in Figure 3.4, no choice of play can prevent the declarer from

44

making the correct guess. Due to this, we are unable to provide a goodness score for reinforcement

purposes of an unsupervised model.

To use supervised learning would require a labeled training set, but no such corpus exists. The

creation of such a data set would require significant work in identifying situations in hands where

a choice among equals exists, and then a human would have to analyze and provide a label. The

time required to create one large enough is considered prohibitive, as analysis might take a minute

or two per deal and we are not sure how large a corpus would be needed for training and testing

of an accurate model.

3.4.3 Information Score

Unable to use sub-simulation or learning to solve this problem, we instead adapt a modified version

of combined defender search first introduced in [Bethe, 2010a] for claiming, and use it to estimate the

information available to the opponent after the completion of the trick being played. The combined

defender search computes the number of tricks known to be available given all information at hand

but otherwise assuming the worst possible outcome for any possible distribution. This provides

the lower bound on the number of tricks declarer can take at any given point. By defining the

combined defensive assets as:

CD = [♠ = (H,L,M);♥ = (H,L,M);♦ = (H,L,M);♣ = (H,L,M)]

Where:

• H is the highest card the opponents have in that suit.

• L is the max length that either opponent could have in a suit.

• M is the min length that either opponent has in a suit.

This construct allows a linear-time accept or reject of a proposed line of play to take a certain

number of tricks; thus we can now perform a state-space search over what is now a complete

information problem reducing the total time required (as opposed to an inner-MCTS).

The key to success here is that we do not leak hidden information in computing an estimate

of the opposition’s choices. This has similarities to how [Cowling et al., 2012] worked to eliminate

information leaks in a set of hidden information card games, except here the concepts are applied

to Bridge.

45

For our modified version, for each play considered by the current player, a one-trick adversarial

search is performed where one side is maximizer and the other minimizer, except that Result is

the combined defender search tricks rather double-dummy tricks. We then keep those numbers as

a secondary score associated with the choice of a particular card.

So where previously we recorded only the number of tricks taken on a path, we now also calculate

and keep the opponents’ lower bound on tricks as the information score in:

Result(s, a) = (tricks, information score)

Now when determining which card to play, we use the information score tricks provided by the

combined defender search to break ties within a tolerance of 0.01 tricks to the maximum.

On the surface, this algorithm is a clear improvement as it leads to correct play in both of the

problem examples: against 7NT from Section 3.3.1, pitching either a spade by East or ♠Q/♣T by

West increases by one the combined defender claimable tricks by the opponent and so is rejected

by our algorithm in favor of best play; similarly against 6♠ in Section 3.3.2, leading the ♠K is

rejected by our algorithm in the tiebreaker as it gives away a trick in combined defender search.

3.4.4 Goal Modification

Based on observing the commercially available bots playing the hand in Figure 3.10 and not finding

the safety play, we also propose a modification to the goal that argmax should be selecting from4

for optimal play. Instead of selecting max(tricks), when more than one action satisfies the goal

number of tricks we compute the sample standard deviation (σ) and instead choose max(tricks−σ),

breaking ties as above using the information score. The choice of σ as opposed to 1.5 or 2 times σ

is arbitrary. Future experiments might examine the effect of choosing other confidence boundaries

for these computations.

Using this metric for move selection, our enhanced MCTS now plays correctly and makes the

contract via safety play in the hand from Figure 3.10.

3.5 Experimental Results

In section 3.4.3 we showed that the information score algorithm is an improvement over base MCTS

by selecting the optimal card for those specific hands. We now performed additional experiments

to understand what value this algorithm would have over a larger set of deals, and what if any

4Note that the software builds used in WCBC play may already include this optimization

46

performance costs exist.

3.5.1 Computational Performance

Now that we have a prospective algorithm, we investigated both the performance cost of this

additional calculation, and the effectiveness in terms of achieved results. Figure 3.11 shows that

while a single combined defender analysis is always faster than double-dummy, for the first few

tricks there is a noticeable cost for the combined defender. Unfortunately, while only one double-

dummy search is required for a single Monte Carlo path, our new algorithm requires a combined

defender analysis for the remaining layout after every possible trick.

135791113
0

10

20

30

40

50

60

Tricks remaining

T
im

e
(m

s)

double dummy
combined defender

Figure 3.11: Double-dummy and Combined Defender compute times

For example, in Figure 3.7 computing the information score when considering each of the

possible first tricks would run approximately 12 different paths which at 15ms per computation

(12-tricks remaining) would cost 0.18 seconds per path, or an additional 18s for 100 paths. In

Figure 3.12 we show the significant additional cost to the MCTS algorithm when enhanced with

combined-defender search. We observed just under 2 minutes on average for a single player to play

the cards to a deal, although this can vary depending on early branching factors in the tree search.

For perspective, the highest level Bridge tournaments allow approximately 8-9 minutes total

per deal split among all players. Other types of play usually offer less time for board completion,

47

135791113
0

50

100

150

200

250

300

Tricks remaining

T
im

e
(m

s)

MCTS
MCTS enhanced

Figure 3.12: MCTS per-path baseline and enhanced timings

and when a human is playing with or against a robot they expect a fairly responsive system. When

allowing all players to play and including the bidding, that puts enhanced MCTS right on the time

limits for the highest level play, but likely too slow for other types of tournaments.

However, it is worth noting that the code used for the combined defender is ten years old and

was written with a goal of sub-second performance to be performed once per trick. With the new

purpose of running several times per path, additional performance is required and likely achievable

through additional caching and parallelism.

3.5.2 Validation of Double-dummy Comparisons

To gain some comparative insight, we compute the expected tricks per deal that human defenders

take versus the double-dummy expectation.

In Table 3.3 we present an analysis of approximately 70,000 deals available from the Vugraph

Project [Sarantakos, 2020] to see how human defenders fared against the expected double-dummy

result of the contract they were defending. For comparison in the table we include numbers from

[Pavlicek, 2014] which cover a different set of similar strength competitions.

This demonstrates that actual results are close enough to double-dummy to provide a good

baseline for comparison. Also of note is reinforcement of the concept of declarer’s edge in play,

48

Source Differential

Vugraph -0.09

Pavlicek -0.07

Table 3.3: Human defense expectation vs. double-dummy

where declarer tends to outperform the defense by a small margin (although this inverts at the

slam level). A more extensive analysis of actual versus double dummy results is available in [Bird

and Anthias, 2011].

3.5.3 Information Score Results

Unfortunately, we do not have a corpus of human vs computer deals, so the best we can do is look

at robot vs. robot double-dummy comparisons before and after our proposed modifications. Table

3.4 shows a similar edge for declarer, and then a noticeable improvement was observed with the

combined defender modification over the same set of deals. However, it should not be compared to

Table 3.3 in absolute terms, as we do not know the relative strength of the robot declarer versus

humans.

Source Differential

MCTS base -0.14

MCTS enhanced -0.09

Table 3.4: Effect of the enhanced MCTS

We already showed that random move selection occurs several times per hand. These results

suggest a significant improvement over the baseline of random move selection through the method

of breaking near-ties (tolerance of 0.01) via the combined defender’s information score.

3.5.4 Using Variance Reduction

While improvements over random move selection could be quantified in terms of a tricks per hand

metric, our next investigation was to modify our goal from taking the most tricks on a deal, to one

of making or beating the contract. To this end we needed to count how often such a decision was

made, and then change our success metric in terms of a change of goal met or failed.

49

We looked for three types of occurrences to consider move modification, using terms G for the

goal, H for the highest expected tricks and S for the safest play (H is always greater than S) and

σ with subscripts for the standard deviation:

• A safety play approximation with an expected value of at least goal and a standard deviation

of zero: S >= G and σS ≈ 0;

• A safest play, where H > S yet S − σS >= G > H − σH ; and

• A safer play where H > S but S − σS > H − σH >= G.

Our findings in Table 3.5 show that these plays do happen with some frequency, and that this

goal modification does lead to improved results at IMPs. It is important to note that these numbers

are dependent on the simulation parameters; that is another MCTS engine might yield different

numbers based on constraints extracted from bidding and play. Since our calculation uses just a

sampling of the possible distributions, it is possible that there are outlier cases not covered in our

sample that would change the computations.

Type Per deal occurrence

Safety 0.10

Safest 0.04

Safer 0.25

Table 3.5: Effect of using standard deviation

When the example hand in Figure 3.10 is played by our baseline MCTS and GiB, the contract

both succeeds and fails depending on the random seeds in use by both declarer and defense. That

is, similar to Figure 3.7, there are subtle defensive mistakes available to unlucky random draws

such as West pitching a low diamond on the second round of clubs. Our enhanced MCTS using

safer move selection always makes this hand as declarer.

3.6 Conclusions

We explored an improvement to random move selection among equals with some success, and found

a small number of hands where a modified goal was profitable. There was a computational cost to

this; however, it was noted that performance improvements may exist in the DTAC library that

50

was used. Additionally, the algorithm, as coded and tested, computed the information score on

each path unconditionally, storing it in case needed. We later realized that for a fixed number

of paths, the memory cost for which is small, first the number of double-dummy tricks could be

computed and then the information score would only be computed if needed to break a near-tie.

This on-demand algorithm would require reserving a time allowance for a potential tie-breaker,

if using a fixed-time algorithm which attempts to compute additional paths until a time limit is

reached.

3.6.1 Future Work

However, our approach was somewhat simplistic, as we did not take a deeper look at how to bring

all of these aspects into a single metric for computation. For example, the information score was

used only to break near-ties, should the tolerance for ties be softened? Similarly how should the

first and maybe second standard deviations be incorporated into these computations?

We might in future work model Result(s, a) = d∗double dummy+ i∗ information score−s∗σ

and then attempt to find optimal weights for d, i, s by playing and replaying a set of deals.

We investigated information score as an estimate of how defender plays affected the information

available to the declarer on the next trick. The same analysis could be used by declarer for

themselves. For example, in the strategy-fusion example of Section 2.3.2.1, the correct line could

be achieved if declarer computed the combined defender score after each possible trick. That is

after playing the ♥A declarer can claim all three tricks whereas after playing a spade to the Ace,

the same might not be true.

Our algorithm produced definite constraints and then gave equal weight to each possible deal

produced by the dealer. This incorrectly assumes that all players follow their partnership rules at

all times. In practice players sometimes stretch boundaries. Therefore, it would be interesting to

weight positive and negative inferences and use those weights in computing averages and confidence

intervals. This could even include learning specific tendencies of human opponents by ingesting

previously played deals.

Also missing from our analysis were certain types of negative inferences based on the non-

occurrence of some earlier event. For example, if a defender had a play that would have defeated

the contract on a certain distribution of the cards but did something else, one could eliminate that

distribution at some probability.

An example of such is Figure 3.13 sourced from [Stewart, 2015]. Against 4♠West leads the ♥2

51

♠ J94

♥ 108

♦A874

♣KQ105

Vul: EW

♠ 85

♥ 2

♦Q10952

♣ J6432

W
N

S
E

♠Q63

♥A7643

♦ J3

♣A97

♠AK1072

♥KQJ95

♦K6

♣ 8

South West North East

1♠ P 2♣ P

2♥ P 2♠ P

4♠ P P P

Figure 3.13: Negative inferences

to East’s ♥A. The ♥3 is returned and West ruffs with the ♠5, the ♣3 is returned to the King and

East’s ♣A, and East returns the ♦J .

Having lost three tricks already, South must take the remaining 10 with the only possible loser

coming in spades. Declarer must determine if the spades are split as shown in Figure 3.13 requiring

a finesse, or if West’s original spade holding was Qxx as in Figure 3.14 in which case the ♠A then

♠K is the correct sequence.

Probabilistically the heart distribution increases the chances of West holding the ♠Q, and this

is borne out by robot play as both GiB and our MCTS went down on this hand playing the ♠A

then ♠K. MCTS believed that the failing line was .3 tricks stronger than taking the finesse with

no difference in standard deviation.

However, assuming East and West are competent players, a strong inference exists to place the

♠Q with East. When in with the ♣A East would have played another heart for West to ruff with

the Queen while South was forced to follow and North was unable to overruff. Missing the ♠Q this

would be a clear play for East to defeat the contract; therefore, the only logical conclusion is that

52

♠ J94

♥ –

♦A874

♣KQ105
♠Q6

♥ –

♦Q10952

♣ J632

W
N

S
E

♠ 63

♥ 764

♦ J3

♣A974

♠AK1072

♥KQJ

♦K6

♣ 8

Figure 3.14: Negative inferences: alternate

they knew West would not be able to ruff higher than dummy’s Jack.

An enhancement therefore exists for play algorithms that would take into consideration that on

all of the layouts where West had the ♠Q, the hand would have been beaten earlier, thus reducing

or eliminating any probability associated with such hands in the Monte Carlo simulation.

53

Chapter 4

Uncontested Bidding

An uncontested or constructive auction is one where one side does all the bidding while the op-

ponents stay silent by passing throughout. Using 70,000 deals sourced from the Vugraph Project

[Sarantakos, 2020] of national and international play from 1996-2010, an analysis showed that al-

most 46% of deals are uncontested. This suggests that it is a reasonable endeavor to study the

sub-problem of partnership bidding free from opponent interference.

Definition: for the purposes of evaluating different results in constructive situations, we define

constructive par as the maximum duplicate score the bidding side could achieve ignoring the op-

ponents’ scores. This is different from the standard definition of par (see Appendix) as we seek to

eliminate random positive IMP rewards that reflect a lack of opponent bidding. For example, if we

bid to 3♥ making and on the given deal the opponents could make 3♠, we should not be rewarded

with a positive IMP score as in our experiment the opponents will not be allowed to bid. Or if we

bid to 4♠ making 10 tricks, and the par result was the opponents saving in 5 clubs or diamonds,

that should not be considered a better result than some other deal where we also make 4♠ and

that is also the par result.

4.1 How Humans Bid

Bidding methods combine the application of rules, judgment and insight in various situations with

the goal of maximizing the expected score. The Laws of the game and the conditions of contest

for a particular event or tournament determine the framework for what is legal, but leave many

decisions up to the individual partnerships. As such there are many different bidding systems and

conventions between partners which affect the meanings of certain bids and therefore judgments

54

about such bids. Importantly, whatever agreements are in place must be disclosed to the opponents.

While we will discuss how these variations might be modeled, for the purposes of this chapter we

will generally assume an agreed upon system such as Standard American [ACBL, 2020].

♠KJ1095

♥A107

♦ 106

♣KQ10

W
N

S
E

♠Q84

♥ J62

♦K984

♣ J92

West East

1♠ 2♠

?

Figure 4.1: Partscore bidding

Opening and responding bids tends to follow a prescribed script, often easily when only a single

choice matches the given hand, but other times requiring some judgment when at a boundary

between two or three options. For example, in the auction in Figure 4.1, West’s opening bid of

1♠ shows 5 or more spades, and opening hand values (typically 11 or 12 HCP or more depending

on agreements1). In this case, it is a strict application of rules, with no other option fitting and

therefore no judgment required. Change the ♥A to the ♥Q, and now with a bare minimum of 11

HCP and no Aces (a secondary criteria often used by humans) the choices of 1♠ or Pass would

both need consideration. East’s response in auction 4.1 is an application of responder’s rules for

partner’s opening of 1♠, where 6-9 HCP and 3 or 4 spades raises to 2♠. Again, this hand falls

squarely in the middle of one choice, so no judgment would be needed, but change the ♦K to the

♦J , and now many would pass with 5 HCP, while others might still choose to raise to 2♠.

At West’s next bid they must consider whether to be satisfied with a partscore in spades, or

whether to try for a game bonus if the side’s combined assets might make one. Here the bids

typically have an agreed upon meaning, but West must use their judgment whether to Pass, try

for game via one of the bids between [2NT, .., 3♠], or just bid the game of 4♠.

4.1.1 Skill Evaluation

How well do humans bid without competition? Using only the auction, we examined the uncon-

tested deals referenced above from the Vugraph Project to see how close to a constructive par was

achieved. For each result we computed a score using double-dummy tricks for the actual contract

minus the constructive par contract converted to IMPs (see Appendix) which would be in range

1High Card Points, see 2.1.11.1

55

[−24, 0] with 0 a perfect score.

Negative scores were achieved in many ways:

• An underbid across a bonus boundary, e.g. contracting for a partscore when enough tricks

were available to make a game bonus;

• Any overbid of more tricks than were available, resulting in a minus duplicate score; and

• An underbid by trump suit, that is a making contract worth 20 or more points less than the

top spot e.g. 2♣ making for +90 when 3♠ was makeable for +140.

With the two underbid categories occurring on 17% of the deals, and overbidding another 14%.

Metric IMPs per deal Range

Constructive par + double-dummy -3.77 [−24, 0]

Par + double-dummy -3.04 [−24, 24]

Par + actual tricks -2.72 [−24, 24]

Table 4.1: Human average IMPs per deal

Our observed result for constructive par using double-dummy tricks, par using double-dummy

and par using actual tricks are in Table 4.1. This matches our expectations for these metrics:

constructive par eliminates all positive IMP scores by eliminating opponent results; par comparisons

will include some positive IMP results where the opponents failed to reach a lower scoring higher

bid such as a save (see Appendix); and declarer will sometimes take more tricks than expected by

double-dummy using actual play and thus increasing IMPs.

4.2 How Computers Currently Bid

There is little published work indicating how the commercial robots bid, but it is generally believed

that they follow similar methods to those proposed in [Ginsberg, 2002]. A database is kept for

matching hands to bids such as the choices of 1♠ and 2♠ in Figure 4.1. For later auction bids

the database can be consulted for the meaning of certain bids, but this is where simulation can be

valuable. Using the same tools of MCTS discussed in the previous chapter, hands can be drawn

consistent with the current auction and then analyzed via double-dummy.

56

For example, West’s second bid in Figure 4.1 might be guided by such a simulation using

partner’s 2♠ bid as well as the opponents’ failure to bid. If 10 or more tricks seem likely2 or

unlikely, 4♠ or Pass may be chosen respectively.

Unsurprisingly computers have no problems matching a bid to a pre-defined database for open-

ing and responding bids, and are also very good at decision bids where an MCTS simulation can

answer the question of what to do next.

However, computers struggle in the in-between space where game (or slam) is possible, but more

information is needed. A human might make a game-try by selecting one of the bids in [2NT, .., 3♠]

using previous partnership agreements on whether this shows length, strength, shortness, or asks

for help3. The hope would be for one partner to convey enough information through a bid for the

other partner to make a better decision between game or not; however, the introduced risk of this

bid is now playing in 3♠ instead of 2♠ when the game-try is rejected. Reaching the higher contract

of 3♠ after a declined game-try may result in an unsatisfying score if only 8 tricks are taken.

♠AK94

♥ 76

♦AK76

♣Q73

W
N

S
E

♠Q

♥AJ953

♦QJ95

♣AK10

West East

1NT 2♦1

2♥ ?

1 5+ hearts, forces a 2♥ response

Figure 4.2: Slam bidding

Similar to game-bidding, slam-bidding often involves several rounds of bidding and exploration

past the initial bids, where the hope is to pass enough information to enable a partnership to better

judge if a slam should be bid. Consider the example in Figure 4.2 where computers have struggled.

Looking at both hands across a 100-path Monte Carlo in Table 4.2, 6♦ rates to be successful almost

all of the time, while 6NT may sometimes succeed and 6♥ may rarely make.

2more in appendix on scoring
3SAYC uses length

57

Suit Tricks

♣ 10.53 ± 0.61

♦ 11.98 ± 0.14

♥ 10.65 ± 0.61

♠ 10.12 ± 0.74

NT 11.34 ± 0.47

Table 4.2: Expected tricks actual hands

The first 3 bids followed the predefined script: 1NT showing 15-17 HCP and a balanced hand

(at most 1 doubleton), 2♦ was a Jacoby transfer showing 5 or more hearts in many types of hands,

2♥ was a forced response to await further information. When given to several of the commercial

programs, this opening portion was mostly identical with some variations based on the methods in

use. But what happened next differed wildly in 10 replays of the same hand:

• BridgeBaron in 10/10 bid 1NT -2♦-2♥-6♥

• Jackbridge in 9/10 bid 1NT -2♦-2♥-3♦-3NT -6NT

• Wbridge5 in 10/10 bid 1NT -3♥-3NT -Pass as it was playing a different system

• GiB showed the most promise in 9/10 bidding 1N-2♦-2♥-3♦-4♦-6♦

The difficulty here for the East hand is that the expected number of tricks can vary wildly

depending on West’s actual hand as shown in Table 4.3.

Suit Tricks

♣ 10.28 ± 1.43

♦ 11.81 ± 0.98

♥ 11.91 ± 0.83

♠ 9.31 ± 2.0

NT 11.89 ± 0.99

Table 4.3: Expected tricks opposite strong NT

While 6♦ appears to be the top spot with the actual West hand in Figure 4.2, with any of

the hands in Table 4.4 there is a different and clear best contract that the bidding would hope to

58

uncover and reach.

West hand Best contract

♠AK94 ♥KQ ♦A76 ♣8763 6NT

♠J934 ♥KQ8 ♦AK6 ♣QJ3 6♥

♠A93 ♥Q8 ♦AK6 ♣QJ953 6♣

♠K943 ♥Q8 ♦AK6 ♣QJ53 3NT

Table 4.4: Best contracts opposite various hands

It is likely that each of the bots used a simulation before the final bid, picking what seemed to

be the most likely contract given the incomplete information available at the time.

This is where humans use judgment and intuition in ways that are extremely hard to program

as they don’t fall into the simple rule or simulation-based decision making categories.

4.2.1 Skill Evaluation

Similar to the tabulation for humans shown in Table 4.1, we sought to evaluate the strength of the

existing bidding engines. However, only limited data was available for this analysis from WCBC

play so we computed our own. Even though it is not considered as strong a bidder as other top

programs, we used GiB as it provides a command-line interface. We setup four robots to bid

random deals until we had collected 10,000 with constructive auctions.

GiB performed at -4.15 IMPs per deal versus constructive par, which at 0.4 IMPs worse than the

result for humans in Table 4.1 is considered significant. While analyzed on different data sets, we

believe the size of the robot data was large enough to be generally representative and comparable

to the human number.

4.3 Reinforcement Learning

Reinforcement Learning [Sutton et al., 1998] is an iterative algorithm for determining which ac-

tions for a given state maximize a reward (or reduce a penalty). At the core is a strategy func-

tion F (s) → a which indicates an action to take given a current state and then an updater

U(F, s, a, r) → F ′ which takes the reward from applying the action to the given state and pro-

duces a new strategy. A model-based algorithm is one which predicts the expected reward from

taking a specific action through a model of the transition probabilities. This contrasts with a

59

model-free algorithm that samples how well a predicted action was rewarded in order to update the

policy for future predictions.

4.3.1 Q-learning

Quality learning or Q-learning [Watkins and Dayan, 1992] is a model-free technique used when

a problem presents a discrete set of states and actions. A value function Q[S,A] is maintained

indicating for each state s the expected value of doing each action a. The standard machinery for

this is the Bellman equation [Bellman, 1952], a recursive formulation of the short-term reward r

plus a discounted (β) long-term reward for a given state-action combination.

Q(s, a) = r(s, a) + βmaxQ(s′, a′)

Learning the optimal action for a given state is done by repeated iterations of applying the

latest policy to the current state, periodically updating the policy based on observed rewards.

4.3.2 Deep Q-learning

When a problem, despite being discrete, becomes too complex to keep a complete table Q[S,A],

researchers have introduced neural-networks as an approximation of the Q-function in a deep Q

network (“DQN”) [Mnih et al., 2013].

The salient feature of a DQN is how the model automatically extracts features through back-

propagation, removing the need for any human-engineered features. A DQN can be vulnerable to

overfitting, so this is tackled using two main techniques:

• Experience replay collects data in mini-batches, and only updates the network after a certain

batch size is reached. By ensuring more variation in the data this reduces the chance of

overfitting.

• A target network approach maintains two separate networks, one which is used for Q-value

lookups and another which stores the network updates from experience replay. After a large

number of batches, the two networks are synchronized. This is used to stabilize the training

and lessen the problem of chasing a moving target.

A common choice for training a DQN is the use of a Huber loss function [Huber, 1992]. This

function reports mean squared error when the error is small, but for large errors switches to absolute

error to reduce noisy outliers:

60

L(δ) =

δ2

2
if |δ| ≤ 1

|δ| − 1

2
otherwise

The Adam learning algorithm [Kingma and Ba, 2014] has become a popular replacement for

the classic gradient descent for problems with non-stationary objectives and noisy gradients. The

algorithm combines two algorithms: Adaptive Gradient (“AdaGrad”) [Duchi et al., 2011] and Root

Mean Square Propagation (“RMSProp”) [Tieleman and Hinton, 2012]. It does so by calculating

an exponential moving average of the gradient and gradient squared, and adapting the RMSProp

learning rates to use both the first and second moments.

We used all of these techniques when building our model described in the next Section.

4.4 Learning to Bid Unopposed

It is clear from the game and slam decision hands just presented that a new approach to computer-

based bidding is needed. In view of the success of AlphaGo and similar programs, it seems reason-

able to try and use reinforcement learning to model Bridge bidding judgment.

4.4.1 Definition

To model a constructive auction, we need consider only the actions of two cooperating partners

with a shared goal of reaching the optimal contract. We can define an auction A as a series of

bids bi selected from the set of bids B = [1♣, 1♦, ..., 7♠, 7NT], remembering that for a bid to be

legal it must either be at a higher level than the previous, or the same level but with a higher

denomination ranking low to high [♣,♦,♥,♠, NT]. In the constructive auction instead of the first

bid, the player may select Pass instead and the auction continues with all bids still legal. For all

subsequent choices a player may select a legal bid continuing the auction, or Pass which ends the

auction. The calls of double and redouble, used only in competitive auctions do not need to be

considered or represented in this sub-problem.

Except in the case of two passes (a passout), when the auction ends the final contract is the

last bid made. The intermediate bids do not matter except for determining the declarer, that is in

an auction such as Figure 4.3, the final contract of 4♠ would be declared by West as the first to

bid in spades even though East made the final bid.

61

West East

1♣ 1♥

1♠ 4♠

Pass

Figure 4.3: Uncontested auction

It is also important to note that we are unable to reinforce the model and evaluate the goodness

of an individual bid as the auction cannot be scored until it completes. However, this should not

prove to be an issue as this is common to reinforcement learning problems.

4.4.2 Representation

To represent the directly observable state, we need 3 parts:

• the cards we hold

• the current auction

• the vulnerability

The cards we hold can be represented as 13 selected of a 52-bit map of

[♣2, ...,♣A,♦2, ...,♦A,♥2, ...,♥A,♠2, ...,♠A]. The current auction can have a bit to represent an

initial pass, plus 35-bits representing the bids that may have happened. We do not need to represent

the final pass as that leads to a terminal state. We also need a final bit indicating if our side is

vulnerable or not (this can affect the scoring and therefore the reward/penalty for a contract).

Vul(1) P(1) bids(35) 13-card hand(52)

Figure 4.4: Uncontested bit representation

This 89-bit vector will be the input state to our model, and is a lossless representation of

our knowledge. The output vector of actions will be Pass plus the 35 bids, with only legal bids

considered.

62

4.4.3 Rewards

The goal of the constructive auction is to reach the optimal contract for each hand based on the

scoring format (see appendix). It is not enough to consider simply the duplicate score, as the

match/tournament scoring format should be an important consideration in the reward structure.

Continuing our evaluation trend, we choose IMPs both because team play is considered the highest

level of Bridge competition, but also because it is easier.

Our reward for any particular auction will then be the score for the final contract using double-

dummy tricks minus the constructive par and converted to IMPs. This IMP score will therefore

be in range [0, -24] since the best we can do is reach constructive par. In addition, to both punish

overbidding and lightly model opponents who would start doubling if we frequently overbid by two

tricks or more, for scoring purposes we will double any contract which goes down two or more.

Since both partners can be assumed to be playing the identical system, our hope is that the

model can infer a hidden expectation of partner’s holdings. Thus for this experiment, we chose not

to model partner’s expected holding, nor to provide such an estimate either learned or rule based

as an input to the model.

4.4.4 Model

We used a Deep Q-learning model, made available and easy to use by OpenSpiel [Lanctot et al.,

2019], which builds on top of the machine learning libraries provided by the Tensorflow project

[Abadi et al., 2015]. OpenSpiel provides a framework for any game to plug in a model which

provides: legal actions in a given state, a state transition function for applying a chosen action to a

state, and a rewards function for scoring a terminal state. At the driver layer many different models

including DQN are available for use with complex configuration parameters including: layers, target

update speed, optimizer, loss function.

Having built a game module for uncontested bidding, we trained a policy network using a four-

layer DQN with 1024 nodes per layer, the input state as described and the output probability for

each of the 36 actions. In the Bellman equation (see Section 4.3), a discount factor of one (β = 1)

was used to represent that there is no penalty for longer versus shorter auctions. We used the

Adam optimizer and Huber loss with network updates every 200 steps. As common with these

sorts of models, a number of training attempts were required in an attempt to manually tune the ǫ

hyperparameter, which is the probability that the model output will be ignored in favor of random

63

exploration of any legal action. We found that starting ǫ at 0.1 and decaying to 0.05 was good for

this problem.

4.4.5 System to Learn

In any AI system built to outplay humans, an important consideration are the human-engineered

constraints put in place. For example, the now famous “move 37” from game two of the AlphaGo

versus Lee Sedol match was originally dismissed by human commentators who initially labeled it

a mistake, only to later realize its sheer brilliance. Had AlphaGo been limited to only moves to

those played by humans in similar situations, this creativity would not have been found.

However, while tempting to give the model freedom to select any bid given any hand, any useful

computer bidder should be compatible with both another robot or a human. So we settled on a

hybrid approach which constrained only opening bids, but afterwards allowed anything.

For opening bids only, we enforced certain selection restrictions utilizing a rules-engine:

• A hand with less than 10 HCP was required to Pass;

• A hand with 10-13 HCP would be offered Pass plus the matching rules-based option; and

• A hand with greater than 13 HCP would not be allowed to Pass.

These limits were chosen as a stretch of the boundaries under which a human might operate.

Most humans open at 11 or 12 HCP, and very few if any human players would pass a 13 HCP hand,

thus our choice of a 10-13 boundary where we allowed the model to be aggressive or conservative.

We used standard rules, and if multiple bids matched such as 1♠ and 1NT we left it to the model

to choose. The following rules were used, where balanced refers to any hand with at most one 2-card

suit (5-3-3-2, 4-4-3-2, 4-3-3-3):

• 2NT : 20-21 HCP balanced (see above);

• 1NT : 15-17 HCP balanced (see above);

• 1♠ : 5 or more spades, no longer suit;

• 1♥ : 5 or more hearts, no longer minor, more ♥ than ♠;

• 1♦ : not a 1♠ or 1♥ opener, more ♦ than ♣; and

• 1♣ : not a 1♠, 1♥ or 1♦ opener.

64

For all actions after the opening bid, the model could consider all legal bids plus pass as output

from our DQN.

In this experiment, we did not take into account that players vary their opening bidding strategy

depending on whether prior players passed. For example, in actual competition, the second bidder

would typically take a more conservative bidding approach if dealer chose to pass; the third bidder

might be more aggressive in their bid in order to distract the next opponent if the first two players

passed; and after three passes, the fourth player has the option to pass and collect a score of zero.

4.4.6 Training Data

Our initial training data included one million randomly generated deals with precomputed double-

dummy analysis. However, this ran into a local-minima of sorts. In 16% of deals the bidding side

could not make anything (we arbitrarily bid as EW). Additionally, in 50% of deals only a partscore

was available.

Our initial trained model, other than when forced to open, found that a strategy of always

passing would often get the top reward of zero or a small loss to a making partscore.

Based on this issue, we felt that that it was appropriate to exclude almost all deals where

nothing could be made. In this way a strategy of always passing will always incur a penalty and

thus we believed would encourage the model to do some bidding. Thus we updated our training

algorithm to bid as NS on any deal where EW could not make anything.

Each deal from the updated training set was bid once, with updates to the target network

occurring every 200 deals.

4.4.7 Experimental Results

After re-training the model with our updated data, we then evaluated against a corpus of 10,000

randomly generated hands where we similarly matched the training data in choosing a bidding side

as the one that could make something.

Our model scored an average of -4.45 IMPs against constructive par per deal. While it did show

that we were able to model bidding using reinforcement learning, disappointingly this result was

slightly worse than GiB and much worse than our human target. While we had hoped that hands

such as the example would result in the ability for our model to learn cooperative communication,

instead we found a an extremely conservative bidder taking advantage of the lack of opponents to

Pass at a much higher rate than humans.

65

Shown in Figure 4.5, a series of hands which a human would open but were usually passed using

our trained model.

Hand Human choice Model Score

♠KQ642 ♥J2 ♦K87 ♣A54 1♠ Pass -4

♠832 ♥AKT75 ♦A65 ♣Q8 1♥ Pass -2

♠AK9865 ♥3 ♦A9 ♣9842 1♠ Pass -9

♠984 ♥8 ♦AK32 ♣AQ832 1♣ 1♣ -1

Table 4.5: Conservative model openings

Similarly, Figure 4.6 lists a series of hands facing an opening bid on which a human would

respond more often than not but passed using our trained model. Presumably bidding introduced

the risk of a higher negative score, where stopping in the lowest possible partscore when game was

unlikely was likely to score better.

Hand Opening Bid Human response Model Score

♠QJ972 ♥A ♦QT64 ♣T53 1♦ 1♠ Pass -3

♠84 ♥AQ97 ♦J976 ♣T43 1♠ 1NT Pass 0

♠K63 ♥A965 ♦QT65 ♣J9 1♣ 1♥ Pass -1

♠Q63 ♥Q2 ♦Q97 ♣QT852 1♠ 2♠ Pass 0

♠JT76543 ♥AJ42 ♦− ♣T3 1♣ 1♠ Pass -14

♠KQ85 ♥9 ♦AJ42 ♣AJ93 1♠ 2NT forcing or 4♥ splinter 4♠ 0

Table 4.6: Conservative model responses

The last hand in Figure 4.6 shows that the model didn’t always Pass; it was able to learn the

bonus reward for successfully bidding game. However, on this hand a standard choice would be to

show the spade fit and strength via a conventional bid, allowing for the chance that the opening

hand is more than a minimum such that enough tricks for slam might be available. On other layouts

of the cards, 12 or 13 tricks might have available in spades, instead our model quickly claims what

turned out to be the top reward of game without further exploration.

As another example with♠Q63♥Q2♦Q97♣Q10852 a human would raise to 2♠ (as opposed

to passing), as the bid has a competitive value in forcing the next opponent’s bids to come at a

high level. Without competition, the model found no value in these sorts of low level raises since

66

such a bid could lower the reward.

These conservative leanings reflect what we found via double-dummy analysis, namely that the

majority of hands make only a partscore, and only a very small portion of hands can make a slam.

The model seems to have discovered that while biding may turn a score of -2 or -3 into a 0, it could

also get too high and quickly score -5 or worse. For example, if 7 tricks are available in spades

and Notrump and 9 in hearts opposite a 1♠ opener passing scores -2, where a bidding sequence to

anything other than 2♥ or 3♥, such as 2NT down one would score -5.

Of specific interest, our model does no better than other programs on the hand in Figure 4.2,

bidding 1NT - 3NT.

4.4.8 Conclusions

The constructive bidding problem provided the opportunity to study two-player cooperation using

reinforcement learning. We showed that an unsupervised system could be trained to produce

reasonable results that are not far off of handcrafted systems developed over many years. Our

model took advantage of the lack of competition and found that on a normal data set an extremely

conservative approach could be only a bit worse than existing rules-based engines. This is not

a perfect comparison, as the human and robot data were extracted from auctions that had the

potential to be competitive but ended constructive, whereas in our experiments the auctions were

forced as constructive. In an actual competition, this system’s results would be dependent on the

deals being played: more deals making only partscore would likely fare well as the model is not

susceptible to overbidding, whereas the opposite if faced with a higher than normal number of deals

making game or slam.

A similar work [Yeh et al., 2018] was published before this one tackling the same problem;

however, we became aware of their work too late to incorporate any of their ideas into our system

design. Yeh et al. also use Deep Q-learning with the standard RMSProp (see Section 4.3.2) for

optimizer, but with a newly defined penetrative Bellman equation they believed was more suited

to the problem of Bridge Bidding. They observed that there are typically less than 6 bids between

the partners in a constructive auction and that the discount factor γ = 1, and thus performed a

recursive simplification of the Bellman equation which they named “penetrative”. Their work offers

more in-depth coverage of tuning hyperparameters and also considers allowing both a structured

and wide-open system, whereas we only present our best values and then focus on the ramifications

of such a trained model.

67

It is our belief that in order to be explainable in competition with humans, the path forward

both for competitive and constructive bidding is more of a hybrid system that balances model

freedom with suggested bids as extracted from a rules-based system throughout the auction.

4.5 Future Work

4.5.1 Auction Meanings

For the purposes of our experiments, we assumed the computer bidder knew the meanings of all

bids, and thus these understandings did not need to be inputs to the model. Rong et al. (2019)

used one network to estimate partner’s hand to provide as input to the network which selects a bid;

further research in this direction appears to be worthwhile. Rather than training different networks

for each different system variation, the model should take advantage of any available rule-based

knowledge about partner’s bids and include them as inputs to the model. Thus the trained model

becomes more generic and can be applied to a wider range of bidding systems.

4.5.2 Competitive Encoding

While we were unable to satisfactorily train a model for competitive bidding in time for this work,

we did create an extremely efficient lossless encoding which may be of some use to future work.

As before, we can encode our hand as 13 of 52 bits selected in a bit-map. Vulnerability now

requires 2 bits to represent the four possibilities of [none, us, them, both]. To encode a lossless

representation of the auction is a bit harder. We know that any bid can only happen once, and

must occur in-between bids which are lower and higher; however, the number of passes and whether

any doubles or redoubles happened are important to capture.

We then note that after a bid is made, there are six possible legal sequences which include

a Double, we combine these and incorporate two other possibilities where the bid was made but

without doubling, or the bid was not made:

0. Bid did not occur

1. No doubling

2. Double

3. Double Redouble

68

4. Double Pass Pass Redouble

5. Pass Pass Double

6. Pass Pass Double Redouble

7. Pass Pass Double Pass Pass Redouble

These 8 possibilities fit into 3-bits, after which there can be 0, 1, or 2 passes before the next

bid which fits into 2.

Passes(2) Bid+risk(3)

Figure 4.5: Single bid bit representation

We also need 2 leading bits to indicate if 0, 1, 2, or 3 passes proceeded the first bid of the

auction. Bringing it all together to represent the current state needed to select a bid we form a

231-bit string.

Vul(2) P(2) 13-card hand(52) bids(5*35=175)

Figure 4.6: Auction state bit representation

Note that this is always relative to the current bidder.

South West North East

P 1♣ X 1♠

2♥ X 3♥ P

?

Figure 4.7: Example encoded auction

As an example ignoring the first 56 bits and using hex32, auction 4.7 would encode as in Figure

4.8:

69

1 2 0 0 1 0 0 0 2 0 0 0 0 9

P 1CX 1S 2HX 3H P

Figure 4.8: Example competitive auction bits

70

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Having built an MCTS card player comparable to commercial software, we showed how the in-

formation score algorithm could be used as an estimate of the opponents’ information on a hand

and to enhance the base algorithm. By using this we were able to make a noticeable improvement

in move selection but at a performance cost which will need to be addressed. We also showed

additional improvement for IMP scoring using confidence boundaries such as σ to make safer plays.

In the bidding phase, we trained a model for the uncontested bidding problem using deep Q-

learning. We showed that reinforcement learning could be used for constructive bidding in place of

either rules-based or simulation-based bidding algorithms at only a small additional loss in IMPs

per deal versus constructive par. Our results were different than similar bidding studies, as we used

different models both for inputs and learning and a modified measuring system.

Although unable to successfully train a model for competitive bidding, we proposed an efficient

lossless encoding which may be useful in future work.

5.2 Future Work

Recent work on bidding has examined cooperative and competitive learning by agents, such that

testing of trained models is done again by agents.

How well would these models do if playing with or against a human opponent? Can they explain

what their partner’s bids mean? This is a requirement in actual play.

What can they learn about certain human opponents or partnerships? Some may be aggressive

71

or conservative in bidding, or perhaps regularly violate agreements: e.g. opening 1NT with 14 HCP

despite a 15-17 agreement. To our knowledge these types of inferences have yet to be incorporated

into any such programs, but would be useful for any Bridge AI program.

The next stage in bidding systems will likely be a hybrid of existing rules-based and simulation-

based systems, with a reinforcement learning trained model.

While there have been improvements on all fronts, we will not know how significant an im-

provement they are taken as a whole unless an effort is made to create an end-to-end bridge player

that incorporates all of the recent advances. Once such a player has been created, it should first

be entered into the WCBC to see how it fares against the established commercial robots.

After that, similar to the AlphaGo match against Lee Sedol, an exhibition match should be

played of 90 boards over 2 days pitting a team of four robots against four international level human

players.

72

Appendix: Scoring in Bridge

Duplicate Scoring

Scoring in duplicate is two-part. First, based on the deal result of contract and number of tricks

taken, a score is achieved using the following formulae. If the total number of tricks taken by

declarer is greater than or equal to the contract tricks plus 6, the contract is said to be made or

making, and the score is as follows:

tricks = total declarer tricks− 6

score = tricks ∗ trump value+ bonus

Where the minor suits of clubs and diamonds are each worth 20 points per trick, the major

suits of hearts and spades are worth 30 points per trick, and Notrump is worth 40 for the first trick,

30 for each additional trick. If the contract tricks ∗ trump value < 100 the contract is a partscore,

for which the making bonus is 50. When the contract tricks ∗ trump value >= 100 (3NT, 4♥,

4♠, 5♣, 5♦)the contract is a game and earns a game bonus of 300 when not-vulnerable, and 500

when vulnerable. Overtricks are any tricks made in addition to the number contracted, e.g. taking

11 tricks in 3♠ you are said to have “made with 2 overtricks”. Note the important distinction of

bidding 3♠ and taking 10 tricks from bidding 4♠ and making the same. In the latter case the

contract earns a game bonus if made since contract tricks of 4 times spades worth 30 is greater

than 100 (4 ∗ 30 = 120) while the former is not.

When contract tricks = 6 a side has contracted for all but one of the tricks and this is called

a small-slam or just slam. If a side bids 7 and thus contracts for all of the tricks this is called a

grand-slam. Making a slam or grand-slam earns an additional bonus added to the game bonus and

base score as per Table A.1.

73

not Vulnerable Vulnerable

Small 500 750

Grand 1000 1500

Table A.1: Table of slam bonuses

To score a making doubled or redoubled contract an augmented formula is used which separates

contract tricks from any overtricks taken.

score = insult+overtricks∗overtrick value+contract tricks∗trump value∗trick multiplier+

bonus

insult non-Vul overtrick value Vul overtrick value trick multiplier

Doubled 50 100 200 2

Redoubled 100 200 400 4

Table A.2: Table of doubled and redoubled multipliers

The slam bonus award is unchanged, but the game bonus is now awarded when contract tricks∗

trump value ∗ trick multiplier >= 100. So lower level contracts, for example, 2♠X and 1NTXX

receive a game bonus when made.

Contract Tricks not Vulnerable Vulnerable

4♠ 10 420 620

3♠ 9 140 140

3♥ 10 170 170

2♠ X 8 470 670

1♣ XX 8 430 630

2NT 9 150 150

3NT 9 430 630

Table A.3: Scoring examples of making contracts

Note: “X” is shorthand for a doubled contract, and “XX” for one that is redoubled.

When the number of tricks taken is less than the contract tricks, the contract is said to “have

gone down”. This can include the number of under-tricks, e.g. “four spades down 2” means that

74

8 tricks were taken (2 less than the required amount).

When a contract fails, the opponents of the declaring side receive a score as follows based solely

on the number of under-tricks, the vulnerability and any doubling as follows in Table A.4.

not Vulnerable Vulnerable

under tricks doubled redoubled doubled redoubled

1 50 100 200 100 200 400

2 100 300 600 200 500 1000

3 150 500 1000 300 800 1600

4 200 800 1600 400 1100 2200

each additional +50 +300 +600 +100 +300 +600

Table A.4: Scoring examples of failed contracts

Vulnerability

In the previous section different scores occur for many contract types due to a mentioned but

undefined notion of vulnerability. In duplicate bridge this is simply a rotating concept based on the

board number, whereby either or both sides may or may not be vulnerable.

This pattern is repeated for each subsequent group of 16 boards, remembering that North is

the dealer on board 1,5,9,... East on 2,6,10,... and so forth.

Vulnerable Board numbers

Neither 1, 8, 11, 14

NS 2, 5, 12, 15

EW 3, 6, 9, 16

Both 4, 7, 10, 13

Table A.5: Table of vulnerabilities

This concept can be important to factor in when bidding as it can change the payoff function

in certain risk/reward situations.

75

Par Result

On each deal there exists an equilibrium score such that neither side can make any further im-

provements without reducing their net score. The term for this result is par and can be used as a

baseline for evaluations of an achieved score, or a bid to contract.

Par can be either the best positive result of one side, or in some cases a negative result for a

side that is both a higher bid than the other sides best positive result but yet smaller than that

score. It is assumed whenever a side has bid higher than they can make that they are doubled.

Double-dummy analysis is used to provide the number of tricks available in each contract/declarer

combination.

For example, if one side can make 7 tricks in NT, 8 tricks in clubs, and nine tricks in hearts,

then the par result would be +140 in 3♥. Whereas if with both sides non-vulnerable, NS can make

10 tricks in hearts, while EW can make 9 tricks in clubs, the par result would be 5♣X down 2 for

-300, which is a better result for EW than -420 against 4♥

Matchpoint Pairs Scoring

Once a score for a deal is achieved by all tables it can be converted to points.

In Pairs scoring a board is played at several tables by different combinations of players and

a pair’s result on a deal is converted to Matchpoints (“MPs”) as follows: 1 point for every score

beaten and 0.5 points for every score tied. This is done for NS pairs taken against the scores from

the NS perspective and then again for EW pairs from theirs. So for a given playing of a deal there is

a fixed number of points available to be split by the opponents equal to the number of comparisons

that will be made.

76

Round NS EW Contract Tricks NS Score

1 1 1 3♥ N 10 +170

2 13 12 4♥ N 10 +420

3 12 10 4♥ N 10 +420

4 11 8 3♥ N 9 +140

5 10 6 3♥ N 9 +140

6 9 4 4♥ N 9 -50

7 8 2 3♥ N 10 +170

8 7 13 3♥ N 10 +170

9 6 11 3♥ N 9 +140

10 5 9 4♥ N 10 +420

11 4 7 4♥ N 9 -50

12 3 5 3♥ N 9 +140

13 2 3 4♥ N 10 +420

Table A.6: Example scores for a single board in 13 table duplicate

In the example deal in Table A.6 which was played 13 times, scores are shown for one direction

first by round, then grouped by score in Table A.7 for matchpointing1. In each case the EW

opponents scored 12 minus that number, and the total points given out is tables ∗ (tables − 1).

Each board is scored as such and then for each pair all the scores are added up to achieve a final

ranking amongst pairs.

Score Occurrences Matchpoints

+420 4 10.5

+170 3 7

+140 4 3.5

-50 2 0.5

Table A.7: Example matchpointing for one direction

Suppose the scores of -50 are due to either a perfect but hard to find play by the defense, or

a small but costly mistake by the declarer with the combined probability of 25 %.

1computing matchpoint scores for each result

77

Knowing all of this, should you bid 3 or 4♥? An expected-value calculation yields:

game : 10.5 ∗ .75 + 0.5 ∗ .25 = 8

partscore : 7 ∗ .75 + 3.5 ∗ .25 = 6.125

The correct decision is to bid the 4♥ game. For this particular set of scores, the break-even

probability is around 46 % bidding game if higher, and not if lower. However, of course at the time

a deal is played you do not know what will happen, so a player is forced to predict how a choice

might fare both in the contracts reached and the probability of making a certain number of tricks.

Teams Scoring

In Teams scoring a match is played between two teams using a series of duplicated boards that

are played at two tables. At one table Team A plays in the NS direction and at the other table

they play EW, while Team B sits against them at both places. To convert score to points, for each

board teammates simply add up their scores and then convert the net to International Matchpoints

(“IMPs”) a sample of which is in Table A.8. The IMPs scored for each board and then totaled up

for each side to obtain a match result.

Difference IMPs

20-40 1

50-80 2

90-120 3

130-160 4

170-210 5

220-260 6

270-310 7

320-360 8

370-420 9

430-490 10

500-590 11

600-740 12

750-890 13

Table A.8: Partial IMP table

78

The highest number of IMPs on a single board is 24 and is awarded for a net score of 4000 or

more [Francis et al., 1995]. Of note is that the table is non-linear in that it gets harder and harder

to score the next IMP.

Board T1 Contract T1 NS Score A IMPs B IMPs T2 Contract T2 NS Score

1 3N S +2 460 - - 3N S +2 460

2 2♥ S +2 170 - 10 4♥ S = 620

3 2♠ S +1 140 - - 2N N +1 150

4 4♠ S -1 -100 - - 3♠ S -1 -100

5 6♥ N = 1430 13 - 4♥ S +2 680

6 2♠ W = -110 - 12 4♠ W X -2 500

7 5♦ E +1 -620 13 - 6N W = -1440

8 4♥ W = -420 - - 4♥ W = -420

Total 26 22

Table A.9: Sample 8 board match (T1=Table 1, T2=Table 2)

Referring to the sample match in Table A.9, suppose on board 5 where Team A NS at Table 1

bid and make 6♥, the player making a decision whether to explore for slam considered that: the

opponents would likely not be in slam, the probability of making slam is P . If slam makes as here,

A wins 13 IMPs, but if it goes down, -100 combined with 650 from the other table results in 13

IMPs to the B side. Thus, in this over-simplistic analysis one should bid slam whenever P > 0.5.

Now consider board 2, where Team B NS were rewarded with 10 IMPS for bidding to 4♥ when

their counterparts did not. Suppose only 9 tricks had been available, then 140 and -100 would

result in 6 IMPs to A. An over simplified analysis suggests that the payoff for bidding a making

game is very high, and thus at IMP scoring, games should be bid even when the perceived chances

of making are greater than 38%. However, this fails to take into account many other outcomes:

you bid a doomed game and the opponents double collecting a large penalty, your counterparts are

also thinking as you and you both end up in the same game contract, the lead and play may be

different and produce a different outcome.

79

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,

M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore,

S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,

P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,

M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from tensorflow.org.

[ACBL, 2020] ACBL (2020). Standard American. http://web2.acbl.org/documentlibrary/play/SP3

(bk) single pages.pdf.

[Bellman, 1952] Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the

National Academy of Sciences of the United States of America, 38(8):716.

[Bethe, 2010a] Bethe, P. M. (2010a). Dtac: A method for planning to claim in bridge. Master’s

thesis, New York University.

[Bethe, 2010b] Bethe, P. M. (2010b). The state of automated bridge play. NYU Report.

[Bird and Anthias, 2011] Bird, D. and Anthias, T. (2011). Winning Notrump Leads. Master Point

Press.

[Brown and Sandholm, 2018] Brown, N. and Sandholm, T. (2018). Superhuman ai for heads-up

no-limit poker: Libratus beats top professionals. Science, 359(6374):418–424.

[Brown and Sandholm, 2019] Brown, N. and Sandholm, T. (2019). Superhuman ai for multiplayer

poker. Science, 365(6456):885–890.

80

[Cazenave and Ventos, 2019] Cazenave, T. and Ventos, V. (2019). The {\alpha}{\mu} search

algorithm for the game of bridge. arXiv preprint arXiv:1911.07960.

[Cowling et al., 2012] Cowling, P. I., Powley, E. J., and Whitehouse, D. (2012). Information set

monte carlo tree search. IEEE Transactions on Computational Intelligence and AI in Games,

4(2):120–143.

[Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning research, 12(7).

[Francis et al., 1995] Francis, H. G., Truscott, A. F., and Francis, D. A. (1995). The Official

Encyclopedia of Bridge. Amer Contract Bridge League.

[Frank and Basin, 1998] Frank, I. and Basin, D. (1998). Search in games with incomplete informa-

tion: A case study using bridge card play. Artificial Intelligence, 100(1-2):87–123.

[Frank et al., 1998] Frank, I., Basin, D., and Matsubara, H. (1998). Finding optimal strategies for

imperfect information games. In Proceedings Of The National Conference On Artificial Intelli-

gence, pages 500–508. John Wiley & Sons Ltd.

[Ginsberg, 1996] Ginsberg, M. (1996). Partition search. In Proceedings Of The National Conference

On Artificial Intelligence, pages 228–233.

[Ginsberg, 1999] Ginsberg, M. (1999). GIB: Steps toward an expert-level bridge-playing program.

In International Joint Conference on Artificial Intelligence, volume 16, pages 584–593. Citeseer.

[Ginsberg, 2002] Ginsberg, M. (2002). GIB: Imperfect information in a computationally challenging

game. Journal of Artificial Intelligence Research, 14:313–368.

[Gong et al., 2019] Gong, Q., Jiang, Y., and Tian, Y. (2019). Simple is better: Training an end-

to-end contract bridge bidding agent without human knowledge.

[Goodman, 2019] Goodman, J. (2019). Re-determinizing information set monte carlo tree search

in hanabi. arXiv preprint arXiv:1902.06075.

[Haglund and Hein, 2020] Haglund, B. and Hein, S. (2020). DDS. github.com/dds-bridge/dds.

[Hoffmann and Brafman, 2006] Hoffmann, J. and Brafman, R. (2006). Conformant planning via

heuristic forward search: A new approach. Artificial Intelligence, 170(6-7):507–541.

81

[Huber, 1992] Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs

in statistics, pages 492–518. Springer.

[Joslin and Clements, 1999] Joslin, D. and Clements, D. (1999). Squeaky Wheel. Optimization.

Journal of Artificial Intelligence Research, 10(5):353–373.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980.

[Knuth and Moore, 1975] Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta prun-

ing. Artificial intelligence, 6(4):293–326.

[Lanctot et al., 2019] Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S.,

Pérolat, J., Srinivasan, S., Timbers, F., Tuyls, K., Omidshafiei, S., Hennes, D., Morrill, D.,

Muller, P., Ewalds, T., Faulkner, R., Kramár, J., Vylder, B. D., Saeta, B., Bradbury, J., Ding, D.,

Borgeaud, S., Lai, M., Schrittwieser, J., Anthony, T., Hughes, E., Danihelka, I., and Ryan-Davis,

J. (2019). OpenSpiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453.

[Legras et al., 2018] Legras, S., Rouveirol, C., and Ventos, V. (2018). The game of bridge: a

challenge for ilp. In International Conference on Inductive Logic Programming, pages 72–87.

Springer.

[Levy, 2017] Levy, A. (2017). Wcbc 2016: The 20th world computer-bridge championship. J. Int.

Comput. Games Assoc., 39(3-4):233–238.

[Love, 1968] Love, C. E. (1968). Bridge Squeezes Complete: Or, Winning End Play Strategy. Dover

Publications.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

[Mossakowski and Mandziuk, 2009] Mossakowski, K. and Mandziuk, J. (2009). Learning without

human expertise: a case study of the double dummy bridge problem. IEEE transactions on

neural networks, 20(2):278–299.

[Nielsen, 2001] Nielsen, J. (2001). BuDDy-A Binary Decision Diagram Package. IT Univ. Copen-

hagen (ITU), Copenhagen, Denmark: Tech. Rep.

82

[Pavlicek, 2014] Pavlicek, R. (2014). Actual play vs. Double-Dummy.

[Rong et al., 2019] Rong, J., Qin, T., and An, B. (2019). Competitive bridge bidding with deep

neural networks. arXiv preprint arXiv:1903.00900.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial intelligence: a modern

approach. Prentice Hall, 3rd edition.

[Russell and Wolfe, 2005] Russell, S. and Wolfe, J. (2005). Efficient belief-state AND-OR search,

with application to Kriegspiel. In International Joint Conference on Artificial Intelligence, vol-

ume 19, page 278. Citeseer.

[Sarantakos, 2020] Sarantakos, N. (2020). Vugraph Project. sarantakos.com/bridge/vugraph.html.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering

the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

[Silver et al., 2018] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.

[Smith et al., 1998] Smith, S., Nau, D., and Throop, T. (1998). Computer bridge: A big win for

AI planning. AI Magazine, 19(2):93–106.

[Stewart, 2015] Stewart, F. (2015). Bridge: January 8, 2015. The Mercury News.

[Sutton et al., 1998] Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement learn-

ing, volume 135. MIT press Cambridge.

[Throop, 1983] Throop, T. (1983). Computer bridge. Hayden.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31.

[Uijterwaal, 2020] Uijterwaal, H. (2020). Dealer. henku.home.xs4all.nl/software/dealer.html.

83

[Ventos et al., 2017] Ventos, V., Costel, Y., Teytaud, O., and Ventos, S. T. (2017). Boosting a

bridge artificial intelligence. In 2017 IEEE 29th International Conference on Tools with Artificial

Intelligence (ICTAI), pages 1280–1287. IEEE.

[Watkins and Dayan, 1992] Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning,

8(3-4):279–292.

[Yeh et al., 2018] Yeh, C.-K., Hsieh, C.-Y., and Lin, H.-T. (2018). Automatic bridge bidding using

deep reinforcement learning. IEEE Transactions on Games, 10(4):365–377.

84

